更全的杂志信息网

The”Hot Spots”Conjecture on Homogeneous Hierarchical Gaskets

更新时间:2016-07-05

1 Introduction

The”hot spots”conjecture was posed by J.Rauch at a conference in 1974. Informally speaking,it was stated in[3]as follows:Suppose that D is an open connected bounded subset of Rd and u(t,x)is the solution of the heat equation in D with the Neumann boundary condition.Then for”most”initial conditions,if zt is a point at which the function x→u(t,x)attains its maximum,then the distance from zt to the boundary of D tends to zero as t tends to ∞. In other words,the”hot spots”move towards the boundary.Formally,there are several versions of the hot spots conjecture. See[3]for details. In this paper,we will use the following version:every eigenfunction of the second-smallest eigenvalue of the Neumann Laplacian attains its maximum and minimum on the boundary.

The”hot spots”conjecture holds in many typical domains in Euclidean space,especially for certain convex planar domains and lip domains.For examples,please see[1,3,11].On the other hand,Burdzy and Werner[5]and Burdzy[4]constructed interesting planar domains such that the”hot spots”conjecture fails.

Figure 1:HH(b),where b=(2,3,3,2,···).

The underlying spaces in above works are domains in Euclidean space. Since we can do analysis on fractals(see[12,13,21]),it is natural to ask whether the conjecture holds for p.c.f.fractals.Recently,there are some works on this topic.On the one hand,Ruan[17],Ruan and Zheng[18],Li and Ruan[15]proved that the conjecture hold on the Sierpinski gasket(SG2 for short),the level-3 Sierpinski gasket(SG3 for short)and higher dimensional Sierpinski gaskets.On the other hand,Lau,Li and Ruan[14]proved that the conjecture does not hold on the hexagasket.The basic tool used in these paper is spectral decimation.

The above fractals studied are all p.c.f. self-similar. Thus it is interesting to ask whether the conjecture holds for non p.c.f. self-similar fractals. In this paper,we will consider homogeneous hierarchical gaskets,which were introduced by Hambly[8,9].These gaskets are non p.c.f..Fortunately,they admit spectral decimation so that we can use similar method to prove that the conjecture holds on these gaskets.

Roughly speaking,the subdivision scheme for homogeneous hierarchical gaskets is a variant of the one for the usual Sierpinski gasket and constructed level by level.Each cell of level m is contained in a triangle,and that triangle is split into triangles of sides 1/bm+1 times the side of the original triangle,where bm+1 ∈{2,3,···}.If bm+1=2,we will have the cell of level m+1 as the same construction of SG2,if bm+1=3,we will have the cell of level m+1 as the same construction as SG3.The resulting gasket is denoted by HH(b)for b=(b1,b2,···).In this paper,we will restrict that bm equals 2 or 3 for each m.See Fig.1 for an example.

Notice that SG2 and SG3 are typical p.c.f.self-similar sets,while generally HH(b)is not a self-similar set.Meanwhile,the Dirichlet Laplacian and the Neumann Laplacian of these gaskets have already been discussed by Drenning and Strichartz[6].Thus,it is natural to ask whether the hot spots conjecture holds on certain homogeneous hierarchical gaskets.

The rest of the paper is organized as follows.Basic concepts are recalled in Section 2.Spectral decimation on HH(b)are described in Section 3.In Section 4,we prove that the”hot spots”conjecture holds on HH(b).

建筑精装修施工技术人员作为建筑精装修工程建设当中首要因素,他们奋战在施工前线,贯穿精装修工程建设各施工环节,对于建筑精装修工程总体质量有着决定性因素,由此可见精装修施工队伍总体素质是多么的重要。为此,建筑企业应当高度重视精装修施工队伍建设工作,加强施工队伍专业技能以及安全责任意识等方面培训工作,使得施工人员具有更高的专业技能以及安全责任意识。通过相关培训以及教育活动,使得从业人员能够恪守施工管理制度,有效避免违规施工作业,保障精装修项目顺利进行。

2 Preliminaries

In this section,we recall some basic notations in[6,13,21].

Let qi,i=1,2,3,be non-collinear points in R2.Define functions Si,i=1,···,3,on R2 as follows:

converges uniformly to f on VV0 as m goes to infinity,where m=m2+m3 and m2 is the cardinality of the set{j≤m:bj=2}and m3 is the cardinality of the set{j≤m:bj=3}.

The Sierpinski gasket is the attractor of the iterated function system.

Let qi,i=1,2,3,be non-collinear points in R2.Define functions Fi,i=1,···,6,on R2 as follows:

For we define

First we define a sequence of graphs with vertices and V=The initial graph Γ0 is just the complete graph onthe vertices of a triangle which is considered as the boundary of HH(b).At stage m of the construction of HH(b),all the cells of level m−1 lie in triangles whose vertices make up Vm−1.If bm=2,then each cell of level m−1 splits into three cells of level m,adding three new vertices to Vm,connected exactly as in the SG2 construction.If bm=3,then each cell splits into six cells of level m,adding seven vertices in Vm,connected exactly as in the SG3 construction.See Fig.2.For x,y∈Vm,we use to denote that x and y is connected in Γm.

Figure 2:Building block for SG2 and SG3.

Definition 2.1.For any continuous function u on HH(b),we define the graph Laplacian∆m for positive integers m by

where degx is the cardinality of the setLet f be a continuous function on HH(b).We say that u∈dom∆with ∆u=f if

(4)从表4可知,不论是对甲基蓝溶液还是对甲基橙溶液,吸附百分率的值由大到小顺序为:复合材料>硅胶>硅酸钙>硅酸镁。

Definition 2.2.The normal derivative at p∈V0 of a function u on HH(b)is defined to be

if the limit exists,where m2 and m3 are defined as in Definition 2.1.

Let EF2 be the set of all N-eigenfunctions on HH(b)corresponding to the eigenvalue λ of ∆.In case that b1=2(or b1=3),we define u1 and u2 to be functions in EF2 such that and are functions as in Fig.4(or Fig.5).It is easy to check thatandare N-eigenfunctions corresponding to the eigenvalue λ1 of ∆1.Thus u1 and u2 are well-defined by Spectral decimation theorem.Furthermore,it is easy to see that u1 and u2 are linearly independent,and so{u1,u2}is a base of EF2.In the sequel of the paper,we will always use u1 and u2 to refer to these functions.

For simplicity,we call λ an N-eigenvalue and u an N-eigenfunction if(2.4)holds.

3 Spectral decimation on HH(b)

The main tool to prove the hot spots conjecture on p.c.f.self-similar fractals is the spectral decimation,which was studied in[7,16,19,20].Drenning and Strichartz[6]pointed out that we can also use this method to analyze all Neumann(or Dirichlet)eigenvalues and eigenfunctions.Relative discussions on Laplacian and spectral decimation on SG3 can also be found in[2]and[10].

Let m be a nonnegative integer and um a function on Vm and λm a real number.We call um a discrete N-eigenfunction and λm a discrete N-eigenvalue on Vm if

We denote by Λm the set of all discrete N-eigenvalue of ∆m.

and similarly for the other vertices if bm=2,and

The level-3 Sierpinski gasket is the attractor of the iterated function system

For ,we define

Theorem 3.1(Spectral decimation theorem I,see[6,20]).Let m>0,we assume that λm−1=and if bm=2,and if bm=3.(i).If u is a discrete N-eigenfunction of ∆m−1 with eigenvalue λm−1,then there exists a unique extension on Vm such that is a discrete N-eigenfunction of ∆m with eigenvalue λm.Furthermore,take values on Vm in one Vm−1 cell shown in Fig.3 with

Define

and similarly for the other vertices if bm=3.

(ii).Conversely,if u is a discrete N-eigenfunction of ∆m with eigenvalue λm,then is a discrete N-eigenfunction of ∆m−1 with eigenvalue λm−1.

(iii).If λm ∈Λm,then the multiplicity of λm on ∆m equals that of λm−1 on ∆m−1.

船舶设备安装中涉及的安装组件较多,因此涉及了减振措施应用也较多。其中在发电机,电气控制箱,空压机设备的安装中,均应用到了减振措施。具体在设备安装中可通过结合金属减振器以及橡胶减振器,进行各设备组件的安装。具体分析如发电机组设备在安装中,主要通过在底座增加减震垫,以及安装橡胶减振器的方式进行安装应用。空压机在安装中则主要通过安装橡胶软垫,以及膨胀接头的方式进行减振应用,确保设备在运行应用中的稳定性。电气控制箱在安装中由于涉及电力装置,以及较多的电力控制元件,其在安装应用中考虑安全性和稳定性,主要结合固定装置以及橡胶减振器进行安装应用,确保船舶运行应用中电气控制质量的安全稳定性。

Theorem 3.2(Spectral decimation theorem II,[6,20]).(i).Let m0 ≥0,let u be a discrete Neigenfunction of ∆m0 with eigenvalue λm0.Assume that{λm}m≥m0 is an infinite sequence related by with all but a finite number of If we define

and extend u to Vby successively using(3.4)and(3.5),then u is an N-eigenfunction of ∆with eigenvalue λ.

(ii). Every N-eigenvalue and its corresponding N-eigenfunctions of ∆can be obtained by the process described in(i).

(iii).Let and λ be defined as in(i).Then the multiplicity of λ of ∆equals that of λm0 of ∆m0.

Figure 3:The functionon one cell of Vm

Define

For each m≥2,we inductively define

Using the similar method and results in[17,18],it is easy to see that 0<λm<1 for all m≥2,and for all positive integer m,we have

Theorem 3.3.Let be defined as in(3.7)and(3.8).Define Then λ is the second-smallest N-eigenvalue of ∆.Furthermore,the multiplicity of λ of ∆equals 2.

Proof.It is clear that 0 is the smallest N-eigenvalues of ∆with multiplicity 1.Thus,in order to prove the lemma,it suffices to prove that λm defined in the lemma is the smallest element in Λm{0}for all m≥1.We will show this by induction.

1)标本测量数据整理时,一般是按照岩性进行分类统计,若全部采用钻孔岩心测量时,可按孔深进行分类,并绘制出电性参数随孔深变化的曲线图;

In case that m=1 and b1=2,we can directly compute all N-eigenvaluesof ∆1 from(3.1).We can obtain that Λ1={6,3,0,6,3,6}. Furthermore,the multiplicities for eigenvalues 0,3,6 are 1,2,3,respectively.Thus 3 is the second-smallest N-eigenvalues of ∆1,while the multiplicity of 3 is 2.

In case that m=1 and b1=3,we can directly compute all N-eigenvalues of ∆1 from(3.1).We can obtain thatFurthermore,the multiplicities for eigenvalues are 1,2,1,2,4,respectively. Thus is the secondsmallest N-eigenvalues of ∆1,while the multiplicity of

Assume that λk is the second-smallest N-eigenvalues of ∆k for some positive integer k.Set m=k+1.Let τ0 is an N-eigenvalues of ∆k+1.In case thatwe have from(3.9).In case that from Spectral decimation theorem,there exists and i∈{2,3}such that From the inductive assumption,we have Since Ri(where i∈{2,3})is strictly increasing in(0,1],we know that .Thus is the second-smallest N-eigenvalue of ∆k+1.

By induction,λ is the second-smallest N-eigenvalues of ∆.Since the multiplicity of λ1 of ∆1 equals 2,we obtain from the Spectral decimation theorem that the multiplicity of λ of ∆is also 2.

4 Proof of the main result

In this section,we always assume that λ and{λm}m≥1 are defined as in(3.7),(3.8)and Theorem 3.3.

Definition 2.3.A function u ∈dom∆is called an eigenfunction of Neumann Laplacian with eigenvalue λ if

察尔汗盐湖是我国最大可溶性钾镁盐矿床。1958年,第一批盐湖人深入戈壁荒漠,正式开启我国钾肥工业生产序幕。60年来,我国钾肥工业从无到有、从小到大、从弱到强,形成了科研、设计、设备制造、施工安装、生产、销售、农化服务等一套完整工业体系,产品市场竞争力不断增强,钾肥生产技术和单套生产能力均达国际领先水平。

In the sequel,we define

for all m≥1,where functions ζ,η,α,β,γ are defined by(3.3a)and(3.3b).

Recall that 0<λm<1 for all m≥2.From above equalities,ζmm for all m≥2.

1.2.3 观察指标 (1)搜集3组受试产妇年龄、身高、体质量以及孕期、痛经史等一般资料,(2)采用NRS评价3组受试产妇在给药5、10、30、60 min、宫口开7~8 cm及宫口全开6个时刻的镇痛情况,(3)记录3组受试产妇第一产程、第二产程、第三产程时间,(4)统计3组受试产妇的最终分娩方式(自然分娩、阴道助产及剖宫产),(5)比较3组受试产妇娩出新生儿出生后1、5、10 min的 Apgar评分,(6)测定3组受试产妇娩出新生儿pH值、动脉血氧分压(PaO2)和动脉血二氧化碳分压(PaCO2)等脐动脉血气指标。

Figure 4:The functions u1 and u2 on V1 in case that b1=2.

Lemma 4.1.Define inductively as follows:,and for m≥1,

Then

Figure 5:The functions u1 and u2 on V1 in case that b1=3.

Proof.We will prove the lemma by induction.It is easy to check that the lemma holds for m=1.

Assume that the lemma holds for m≤k,where k is a positive integer.Let m=k+1.In case that bk+1=2,by inductive assumption,we have

In case that bk+1=3,we have

By induction,the lemma holds for m≥1.

Lemma 4.2.Define{xm}m≥1 and{ym}m≥1 inductively as follows:and andif b1=3,and for all m≥1,

Let{zm}m≥1 be the sequence defined as in Lemma 4.1.Then for all m≥1,we have

Proof.We will prove the lemma by induction. In case that b1=2,we have 2x1+z1=In case that b1=3,we haveThus the lemma holds for m=1.

Assume that the lemma holds for m≤k,where k is a positive integer.Let m=k+1.In case that bk+1=2,from(4.2),(4.4a),(4.4b)and using inductive assumption,we have

Thus From(4.1)and using inductive assumption,we have

In case that bk+1=3,we have

Thus 2xk+1+zk+1=−(2yk+1+zk+1).From(4.1)and using inductive assumption,we have

By induction,the lemma holds for m≥1.

Lemma 4.3.Let{xm,ym,zm}m≥1 be defined as in Lemmas 4.1,4.2,andbe defined as(2.1),(2.2).Define if if bm=3,Then for all m≥1,

Proof.We will prove the lemma by induction. From Figs.4 and 5,we know that the lemma holds for m=1.

Economic Regulation of Network Connection of Offshore Wind:Applying European Experience to China:Part Ⅱ Ilka LEWINGTON,PAN Deng(8)

Assume that the lemma holds for m≤k,where k is a positive integer.Let m=k+1 and bk+1=2.From Spectral decimation theorem and inductive assumption,we have

指数平滑法(Exponential Smoothing,ES或Holt-Winters)最早由布朗(Robert G Brown)所提出,现如今广泛应用于经济预测领域。它的基本思想是近期的数据对当下的影响较大,而较远时期的影响较小,所以在预测的过程中给予近期数据的权重较大,而较远时期的数据权重较小。

In the case that bk+1=3,we have

上一节的分析过程中,主要根据经验和差异性分析选取了连续三个采样注视点的位置X坐标和Y坐标、注视时间、眼跳幅度以及瞳孔直径共15个分量作为分类特征,本节我们考察不同眼动指标组合以及不同采样点个数对分类预测准确率的影响.并且我们将注视点的X坐标和Y坐组合进行讨论,将二者作为注视点的位置特征.表3列举了采样注视点个数为3时的眼动指标组合对应的分类预测准确率.

Similarly,we can prove that other equalities in(4.6a)and(4.6b)also hold for m=k+1.

By definition of x1 and y1,we know that(4.6c)holds for m=1.Thus it suffices to show that(4.6c)holds for m≥2.

最近有机会看到何军为庆祝广西壮族自治区成立六十周年创作的八幅国画作品,不禁有些惊讶!这些绘画作品的元素全部来自广西,有广西港口题材、广西少数民族题材,基本每幅国画尺寸都达到两米多,画面复杂,气势宏大,而且都是在这一年多时间里创作的。艺术源于生活,听说为了创作这些作品,他多年前就注重素材的积累,一直收集广西港口、少数民族资料。多次到防城港、钦州、北海、融水、三江、龙胜、那坡、武鸣等地采风,体验生活,了解广西港口的发展成就和少数民族风情。从这一系列的国画作品来看,可以读出画者对家乡的热爱,对广西的赞美,让广西绚丽多姿的民族文化和发展繁荣的时代风貌跃然纸上。

Let{zm}m≥1 be defined as in Lemma 4.1.From Lemma 4.2,we haveSubstituting zm byand noticing that 0<λm<1 for m≥2,we obtain that

Similarly,we have From(4.5),we have 2xm+zm>0>2ym+zm so that xm>ym.Hence(4.6c)holds for m≥2.

(2)数据整合度低,信息孤岛现象严重。各MIS系统分别由不同的厂商建设,系统间数据整合度低,缺乏全局数据标准规范约束,数据交换共享困难,信息孤岛现象普遍存在。

The following lemma plays an essential role in our proof.

由图1可以看出,在研究期间,劳动力增长率和土地增长率相对较为平缓,而农业总产值增长率和资本年增长率在不同的时间阶段具有明显的差异。其中,资本投入对第一产业总产值增长的贡献较大,但是,由图1也可以看出随着时间的推移,农村固定资本投入对经济增长的作用有逐渐递减的趋势。从这种情况可以看出,在过去的一段时间内,安徽省农业增长主要依靠传统的要素投入来提高产量,即外延型增长方式;随着社会的进一步发展,资源的分配效率和产品的结构效益得到提高,农业基本要素投入的作用出现了平稳发展、增速减缓的局面。转变经济增长方式,意味着实现主要由生产效率提高来推动产出增长,而技术进步则是提高效率的主要途径。

In case that bk+1=2,from Fig.3,we know that there exists a permutation(i1,i2,i3)of(1,2,3)such thatwhile

Proof.We will prove the lemma by induction. From Figs.4 and 5,we know that the lemma holds for m=1.

Assume that the lemma holds for m≤k,where k is a positive integer.Let m=k+1 and p1,p2,p3 be three distinct vertices of one cell C of Vk+1.Then there exists a unique cell C'of Vk which contains C.Let be three distinct vertices of C'.

Buckling Impact Analysis of Cylinderial Shells with Opening and Reinforcement Under Axial Compression HU Fuquan,LI Pengfei,HE Zheng(60)

Lemma 4.4.Let{xm,ym,zm}m≥1 be defined as in Lemmas 4.1 and 4.2.Let p1,p2,p3 be three distinct vertices of one cell of Vm where m≥1.Assume that u1(p1)≤u1(p2)≤u1(p3).Then

By inductive assumption,we have

Without loss of generality,we assume that u1(pi2)≤u1(pi3).By Spectral decimation theorem,

where(j1,j2,j3)and(1,2,3)are two distinct permutations of(1,2,3).Notice that ζmm for all m≥2 and for all m≥1.By inductive assumption,

Combining this with(4.8a),we know that(4.7a)holds for m=k+1.

By Lemma 4.3,we know that for all m≥1.By inductive assumption,

Sinceis another permutation of(1,2,3)and

Combining this with(4.8b)and(4.9),we know that(4.7b)holds for m=k+1.

In case that bk+1=3,we know from the proof of Lemma 4.4 in[18]that(4.7a)and(4.7b)also holds for m=k+1.

It directly follows from the above lemma that we have:

Theorem 4.1.u1 attains its maximum and minimum on V0.

Define

Noticing that u2 is a rotation of u1,and −(u1+u2)is a symmetry of u1,we know that u2 and −(u1+u2)also attains its maximum and minimum on V0.Clearly,0≤f,g,h≤1.

Now we can show that the”hot spots”conjecture holds on HH(b).

Theorem 4.2.Every eigenfunction of the second-smallest eigenvalue of Neumann Laplacian on HH(b)attains its maximum and minimum on the boundary V0.

Proof.Let u be an N-eigenfunctions with respect to the second-smallest N-eigenvalue of∆.Since{u1,u2}is a base of EF2,there exist constants c1,c2 such that u=c1u1+c2u2.By(4.10),we have f+g+h=1 so that and It follows that

Notice that 0≤f,g,h≤1,f+g+h=1 andHence,

for all x∈HH(b).

Acknowledgements

The work is supported in part by NSFC grants Nos.11271327,11771391. The author wishes to thank Professor Huojun Ruan for his helpful suggestions.

References

[1]R.Atar and K.Burdzy,On Neumann eigenfunctions in lip domains,J.Amer.Math.Soc.,17(2004),243–265.

[2]N.Bajorin,T.Chen,A.Dagan,C.Emmons,M.Hussein,M.Khalil,P.Mody,B.Steinhurst and A.Teplyaev,Vibration nodes of 3n-gaskets and other fractals,J.Phys.A,41(2008),015101.

[3]R.Bañuelos and K.Burdzy,On the”hot spots”conjecture of J.Rauch,J.Funct.Anal.,164(1999),1–33.

[4]K.Burdzy,The hot spots problem in planar domains with one hole,Duke Math.J.,129(2005),481–502.

[5]K.Burdzy and W.Werner,A counterexample to the”hot spots”conjecture,Ann.Math.,149(1999),309–317.

[6]S.Drenning and R.S.Strichartz,Spectral decimation on hambly’s homogeneous hierarchical gaskets,Illinois J.Math.,53(2009),915–937.

[7]M.Fukushima and T.Shima,On a spectral analysis for the Sierpinski gasket,Potential Anal.,1(1992),1–35.

[8]B.M.Hambly,Brownian motion on a homogeneous random fractal,Probab.Theory Related Fields,94(1992),1–38.

[9]B.M.Hambly,Brownian motion on a random recursive Sierpinski gasket,Ann.Probab.,25(1997),1059–1102.

[10]M.Ionescu,E.P.J.Pearse,L.G.Rogers,H.-J.Ruan and R.S.Strichartz,The resolvent kernel for p.c.f.self-similar fractals,Trans.Amer.Math.Soc.,362(2010),4451–4479.

[11]D.Jerison and N.Nadirashvili,The”hot spots”conjecture for domains with two axes of symmetry,J.Amer.Math.Soc.,13(2000),741–772.

[12]J.Kigami,Harmonic calculus on p.c.f.self-similar sets,Trans.Amer.Math.Soc.,335(1993),721–755.

[13]J.Kigami,Analysis on Fractals,Cambridge University Press,2001.

[14]K.-S.Lau,X.-H.Li and H.-J.Ruan,A counterexample to the”hot spots”conjecture on nested fractals,J.Four.Anal.Appl.,in press,doi:10.1007/s00041-017-9524-z.

[15]X.-H.Li and H.-J.Ruan,The”Hot spots”conjecture on higher dimensional Sierpinski gaskets,Commun.Pure Appl.Anal.,15(2016),287–297.

[16]R.Rammal and G.Toulouse,Random walks on fractal structures and percolation clusters,J.Phys.Lett.,44(1983),L13–L22.

[17]H.-J.Ruan,The”hot spots”conjecture for the Sierpinski gasket,Nonlinear Anal.,75(2012),469–476.

[18]H.-J.Ruan and Y.-W.Zheng,The”hot spots”conjecture on the level-3 Sierpinski gasket,Nonlinear Anal.,81(2013),101–109.

[19]T.Shima,On eigenvalue problems for the random walks on the Sierpinski pre-gaskets,Japan J.Indust.Appl.Math.,8(1991),127–141.

[20]T.Shima,On eigenvalue problems for Laplacians on p.c.f.self-similar sets,Japan J.Indust.Appl.Math.,13(1996),1–23.

[21]R.S.Strichartz,Differential Equations on Fractals,Princeton University Press,2006.

Xiaofen,Qiu
《Analysis in Theory and Applications》2018年第4期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号