更全的杂志信息网

Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL)Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations

更新时间:2016-07-05

1 Introduction

In order to present the partial differential equation that is solved numerically, firstly,we give an introduction to the linear and nonlinear Fokker-Planck equations(FPEs)and provide a brief review and history of these equations in the following subsection.

1.1 The Governing Equations

The solution of the FPEs is important in various fields of natural science,including astrophysics problems,biological applications,chemical physics,polymer,circuit theory,dielectric relaxation,economics,electron relaxation in gases,nucleation,optical bistability,dynamics,quantum optics,reactive systems,solid-state physics,and numerous other applications.[1]The origin and history of FPEs go back to the time when Fokker-Planck described the Brownian motion of particles.[1−2]The theory of Brownian motion exists in many areas of physics and chemistry,and particularly in those that deal with the nature of metastable states and the rates at which these states decay.[3]Kramers equation is a special form of the FPEs utilized to describe the Brownian motion of a potential.[4]

本文以沪深A股高技术上市公司为研究对象,高技术企业的判断依据为公司披露的高技术企业认定公告与复审公告,时间跨度为2011~2017年。剔除ST、∗ST以及数据缺失公司后,得到共计3766个研究样本。为消除极端值影响,对连续性变量进行了1%水平的缩尾处理。数据来源于WIND数据库。

The general form of the FPEs,for the variable x and t,is

物理学是一门系统性强的学科,在生活的各个领域都有着重要的作用.高中生物理知识的学习内容以经典物理学的基础知识为主,为以后学习力学、热学、原子物理学等现代科学技术奠定了基础.因此,在高中物理教育中不仅要教授给学生专业的物理知识,更重要的是培养他们的思维能力.物理学在长期的发展过程中形成一套整体的思维方法,包括分析与综合的方法、比较与分类的方法、归纳与演绎的方法等等.高中生在学习物理过程中具备这样的整体思维,对其今后高中物理知识的学习有着十分重要的帮助.在高中物理教育中培养学生的整体思维应该注意以下几点.

当前在精神分裂症上的治疗,以药物治疗为主。但一些抗精神病药物往往易引发锥体外系反应[9]。近年来,非典型抗精神病药物因在锥体外系不良反应方面的发生率较低,被临床广泛应用,利培酮作为非典型抗精神病药物,在精神分裂症治疗中表现出较好临床效果[10]。作为一种中枢多巴胺与5-HT2受体拮抗平衡剂,利培酮能够起到对多巴胺受体的有效阻断,对于中枢系统5-HT与多巴胺拮抗具有平衡作用,可有效减少锥体外副作用的发生,使精神分裂症患者阴性症状得到明显改善[11]。此外,利培酮作为D2受体拮抗剂,在精神分裂症患者治疗中应用还可有效改善其阳性症状[12]。

where A(x)and B(x)are referred to as the drift and diffusion coefficients and in case the drift and diffusion coefficients depended on time we can show it as:

The above equation is considered as the equation of motion for the distribution function y(x,t),and is also called the forward Kolmogorov equation.

In this section,generally,the GL functions are introduced and suitable formulas for the first-and second-order derivative matrices of these functions are presented.

作为钻井企业,在钻井工程系统提速提效的大前提下,需要在进一步强化技术管理的基础上,认真制定完善的技术保障措施,强化技术分析和技术交底,做好现场技术管理基础工作,加大现场技术检查指导力度,加强重点井、重点工序的盯井把关,集成成熟传统工艺技术,大力推广应用新技术、新工艺、新工具。抓住“三个一”精准化钻井施工模式这一关键,以把每口井都打造成精品工程为目标,实现钻井工作的有序高效。

The more general forms of FPEs are its nonlinear form of the equation.The nonlinear FPEs may be derived from the principles of linear nonequilibrium thermodynamics.[5]Nonlinear FPEs have important applications and advantages in miscellaneous fields of sciences:biophysics,neurosciences,Engineering,laser physics,nonlinear hydrodynamics,plasma physics,pattern formation,poly-mer physics,population dynamics,psychology,surface physics.[1,6]

In the nonlinear FPEs,the equation also depends on y where this dependency happens in the drift and di ff usion coefficients.The general form of this equation is

by which

现象学给出了不可置疑的答案。化约言之,现象学揭示了:人们意向行为中的意向对象,总是一个背景上牵扯着其他可能之物的对象,这个对象是在一个交融、互构、磋磨的背景淡晕中呈现出来的。换句话说,看似独一、个别的现象中,实质潜伏着普遍性,本质即在现象中,所以直观现象,即是直观本质,因此中国古典艺术批评先天自然轻松地直观与通达了艺术的真理。

Although there can be analytical solutions for the FPEs,it is difficult to result in solutions when the number of variables are large and no separation of variables methods are demanded.

1.2 The Literature Review on the FPEs

In the early 1990s,Palleschi et al.[7−8]investigated FPEs. They discussed a fast and accurate algorithm for the numerical solution of Fokker-Planck-like equation.Vanaja[9]presented an iterative solution method for solving FPEs.Zorzano et al.[10]used the finite difference to investigate two-dimensional of this equation.Dehghan et al.[11]employed the He’s variational iteration method(VIM)to give a solution for this equation.Tatari et al.[12]applied the Adomian decomposition method for solving the FPEs.Using the cubic B-spline scaling functions,Lakestani et al.[2]obtained the numerical solution of FPEs.Kazem et al.[6]utilized RBF to solve the equation.

尽管生物质能烤房设备烘烤烟叶燃烧的都是生物质。但由于不同设备对温湿度控制的响应速度和协同运行效率不同,可直接影响整个烤房供热设备的综合热效率,进而影响烟叶烘烤成本及推广价值。从表2可知,单烤燃料消耗,常规燃煤烤房(CK)为727 kg,不同生物质能烤房为848~906 kg,生物质燃烧机烘烤烟叶消耗燃料比燃煤高,其主要原因是生物质颗粒的燃值低于煤炭的燃值。综合热效率,生物质燃烧机热效率比燃煤烤房高13%~15%。不同类型的生物质烤房的热效率各有差异,其中,T3最高,达51.9%;T2其次,为50.8%;T4最低,仅48.3%,但仍高于CK。

Other insights for solving FPEs are numerical techniques.Among them,Wehner[13]applied path integrals to solve the nonlinear FPEs.Fourier transformations were employed by Brey et al.[14]Zhang et al.[15]applied distributed approximating functionals to solve the nonlinear FPEs.Further to these,for solving the one-dimensional nonlinear FPEs,the finite difference schemes[16]are also applied.

In recent years,dozens of scientists are attracted to Spectral and pseudo spectral methods.[17−18]Spectral methods are providing the solution of the problem with the aid of truncated series of smooth global functions;[19−20]They provide such an accurate approximation for a smooth solution with relatively few degrees of freedom.They are widely employed in the approximation of the solution of differential equations,variational problems,and function approximation.The reason existed beyond this accuracy is that the spectral coefficients tend to zero faster than any algebraic power of their index n.[21]As said in such papers,spectral methods can fall into 3 categories:Collocation,Galerkin,and Tau methods[22]Collocation method provides highly accurate solutions to nonlinear differential equations.[23−26]There are only two main steps to approximate a problem in collocation methods:First,as a common approach,appropriate nodes(Gauss/Gauss-Radau/Gauss-Lobatto)are chosen to represent a finite or discrete form of the differential equations.

Second,a system of algebraic equations from the discretization of the original equation is obtained.[27−29]The Tau spectral method is one of the most important methods used to approximate numerical solutions of various differential equations.This method approximates the solution as an expansion of certain orthogonal polynomials/functions and the coefficients,in the expansion,are considered so as to satisfy the differential equation as accurately as possible.[30]Spectral Tau method is,somehow,similar to Galerkin methods in the way that the differential equation is enforced.[21]In Galerkin Spectral method,a finite dimensional subspace of the Hilbert space(trial function space)are selected and trail and test functions are regarded the same.[31]

Moreover,some numerical methods like Finite difference method(FDM)and Finite element method(FEM)that are implemented locally and require a network of data.Such methods like Meshfree methods do not require to build a network of data.[32−33]Comparing to these mentioned numerical methods,spectral methods are globally performing and they are continuous and do not need network construction.

In addition to spectral methods,pseudospectral methods have been of high interest to authors presently.[34−37]

Actually,in standard pseudospectral methods,interpolation operators are used to reduce the cost of computation of the inner product,in some spectral methods.For this purpose,a set of distinct interpolation pointsis defined,where the corresponding Lagrange interpolants are achieved.In addition to this,in collocation points,the residual function is set to vanish on the same set of points.Generally speaking,these collocation points do not need to be the same as the interpolation points;however,to have the Kronecker property,they are considered to be the same:therefore,by this trick,they reduce computational cost remarkably.[38−39]

1.3 The Main Aim of This Paper

In this study,we develop an exponentially accurate generalized pseudospectral method for solving the linear and nonlinear FPEs:This method is a generalization of the classical Lagrange interpolation method.To reach this goal,in Sec.2 some preliminaries of Jacobi polynomials are brought.In this section,we introduce the GL Functions and develop the GLJGL collocation scheme.Section 3 describes the numerical method;it explains the methodology and estimation of the error.We carry out numerical experiments to validate the presented collocation scheme.Subsequently,the analysis will be implemented to linear and nonlinear FPEs.Finally,some concluding remarks are given in Sec.5.

then,the matrix form of Eqs.(28)and(29)will be

2 Preliminaries and Notations

2.1 Jacobi Polynomials

The Jacobi polynomials are the eigenfunctions of a singular Sturm-Liouville equation. There are several particular cases of them,such as Legendre,the four kinds of Chebyshev,and Gegenbauer polynomials.Jacobi polynomials are defined on[−1,1]and are of interest recently.[36,40−43]The recursive formula for Jacobi polynomials is as follows:[44]

如果说真有“别人家的孩子”的话,那么Sarah绝对算得上是一个。25岁时一不小心就拿了WSET Diploma全球最高分,赶在30岁前就拿下了葡萄酒大师的头衔。哦,别忘了她可是耶鲁大学毕业的设计师,自己还运营一家专门为进口酒商设计包装的工作室。这位新晋的葡萄酒大师,也刚刚“进阶”成为一名母亲。事业家庭双丰收的2018,Sarah又是怎样平衡工作和家庭带给她的变化?

with the properties as:

(3) 试验初期,排水管壁面积的大小会影响土体梯度比Gr值下降速度。与小直径排水管壁试样相比,在大直径试样条件下,砾质黏性土下降速度变缓的时间比小直径试样早3 h,砂质黏性土早3 h,粉质黏性土早1 h。梯度比下降速度大小为:大直径排水管壁试样>小直径排水管壁试样。

and its weight function is wα,β(x)=(1 − x)α(1+x)β.

By the aid of these,we can write Eq.(25)as

Moreover,the Jacobi polynomials are orthogonal on[−1,1]:

where δm,nis the Kronecker delta function.

The set of Jacobi polynomials makes a completeorthogonal system for any g(x) ∈there is an expansion as follows.

where

2.2 Generalized Lagrange(GL)functions

In addition to the forward Kolmogorov equation,there is another form of the equation called backward Kolmogorov equation.

谢谢姥姥理解!苏楠装着没听明白姥姥的揶揄。唉,那里根本就不是我心目中的农村。那些村庄,怎么说呢?就像一个人穿了件仿制的名牌衣服,一心想着摩登起来,却又洋不洋土不土的,让人贻笑大方。炊烟也没了,新农村倒是起来了,统一规划,统一建设。好是好,总觉得农村不该是这个样子……

Definition 1 Considering the generalized Lagrange(GL)functions formula can be shown as:[38−39]

where κj=uj/∂uw(xj), ∂uw(x)=(1/u)∂xw(x),and u(x)is a continuous and sufficiently differentiable function which will be chosen to fit in the problem’s characteristics.For simplicity u=u(x)and ui=u(xi)are considered.The GL functions have the Kronecker property:

Theorem 1 Considering the GL functions Luj(x)in Eq.(13),one can exhibit the first-order derivative matrices of GL functions as

where

Proof As the GL functions defined in Eq.(13),the first-order derivative formula for the case kj can be achieved as follows:

But,when k=j,with L’Hˆopital’s rule:

This completes the proof. ?

2.3 Generalized Lagrange Jacobi Gauss-Lobatto(GLJGL)Collocation Method

In case of GLJGL collocation method,w(x)in Eq.(13)can be restated as:

where λ is a real constant and to simplify the notation,we write

with the following important properties:

Then,we have:

Recalling thatand using formulas in Eq.(15)–(20),we find the entry of the first-order derivative matrix of GL functions as:

Theorem 2 Let D(1)be the above matrix( first order derivative matrix of GL functions)and define matrix Q such thatthen,the second-order derivative matrix of GL functions can be formulated as:

Proof See Ref.[38]. ?

3 Numerical Method

In this section, firstly,the time discretization method is recalled.Secondly,GLJGL collocation method is implemented to solve the FPEs.In a matrix form,the method has been presented and the error of this method is estimated.

3.1 Discretization

For solving the FPEs,we first discretize the time domain;to do this,we apply the Crank-Nicolson method.The main reason for choosing this method is its good convergence order and its unconditional stability.[45]To apply this method, firstly,we approximate and simplify the first-order derivative of y(x,t),with respect to the time variable,and deriving a formula from finite difference approximations as follows:

As said in the previous subsection,in each time level,we approximate the solution of FPEs,and therefore,the time variable is omitted from the equation.In each time step,we approximate an equation like in Eq.(25).The unknown yi+1(x)is approximated as

Considering FPEs,one can read in which E0,k,E1,iand E2,iare the coefficient specified in the “Numerical Examples” section;in linear FPEs,E0,i=0.

Implementing Crank-Nicolson on FPEs

and can be simplified as

By applying this method,the problem can be discretized in small time levels.As shown,time variable is discretized using Crank-Nicolson method.In each time level,we are to approximate the FPEs.Solving in sufficiently large time levels,brings in a good approximation for FPEs.

3.2 Implementation of GLJGL Collocation Method for Solving FPEs

The domain Ω × [0,T)is decomposed as Ω × [0,T)=and∆t=T/s:The error of this approximation is of order O(∆t).From now on,for simplicity yi(x)=y(x,Ti).

where

As y(x,0)=y0(x)=f(x)we can calculate f(x)=LA0,and by collocating n+1 nodes we can result in:

该地区黄土湿陷的起始时间大致为4 d,且在开始一段时间由于其含水率迅速的变化,其湿陷变形发展较快,黄土结构迅速的破坏,随着含水量的增加趋于稳定,其湿陷速率呈现出稳定的趋势,该阶段湿陷变形较为均匀,且大部分湿陷变形都在这一阶段发生,之后湿陷速率逐渐呈现减小,直至不产生湿陷变形,停水后进行连续的观测,发现又会产生湿陷变形,其原因为停水后,土体的含水率不断下降,土体的基质吸力增大导致产生二次湿陷,作者推断除此之外,还与温度的变化有关,当浸水时,水温相较深层土体较低,会降低土体的环境温度,而当停止浸水后,土体会逐渐恢复温度,温度升高会加大黄土的湿陷性,固导致进一步湿陷。

The boundary conditions,by considering Guass-Lobatto scheme and Eq.(26),are specified as:

therefore,by collocating n+1 points and de fi ning

在前文的认识基础之上要明确一点,那就是数据新闻的本质仍然是“新闻”。因此,新闻制作者对于新闻内容设置的目的性是要高于用户阅读行为的。在讨论数据新闻“谋划者”时必须分清读者阅读行为与制作者引导行为的主次关系,读者的阅读行为只是数据新闻叙事者的一个部分,而整个数据新闻的叙事不仅仅只靠读者的阅读,数据新闻制作者的引导行为是“谋划”的主要部分。根据《中国数据新闻发展报告(2016—2017)》,目前我国数据新闻从业人员主要包括团队决策人(负责人)、数据记者(编辑)、数据分析师、可视化工程师和技术人员。这些从业人员在从选题到数据新闻的统筹制作都起着“谋划”的作用。

The first and last row of matrices H0,H1,H2,and first and last elements of vector R are defined as if they satisfy the boundary condition of FPEs.

Hence,we can achieve the numerical solution of y(x,t)at each time level.Notice that,at time level 0 the solution is computed from the initial condition;This is shown in Eq.(27).From the solution of the system in Eq.(30),at each time level,for the next time levels,we will achieve the unknown values.In other words,it means that by solving this system,in each step of i+1,the unknown coefficients Ai+1will be found.

This system of equations is solved by applying a proper method like Newton methods.To show the accuracy of this method,some examples in the next section,are illustrated.

玉敏急了,说许姐,你太会编故事了,你不觉得这故事编得漏洞百出吗?第一,我姑父帮你忙时,他暗示你要钻戒了吗?第二,我姑父暗示你到罗兰金店买钻戒了吗?第三,是你约我姑父的,还是我姑父约你的?冷静点吧许姐,不要异想天开了。我告诉你这件事,是想把事情妥善解决了,然后大家还是朋友,我姑父能关照你的时候会继续关照你。你是做生意的,难道不希望有人罩着吗?如果你刻意与我们为敌,后果我就不说了。

3.3 Error Estimation

Theorem 3 Let x0=a,xn=b andbe the roots shifting Jacobi polynomialfrom[−1,1]to[a,b].Then,there exists a unique set of quadrature weights if ned by Jie Shen[46](Jacobi Gauss-Lobatto quadratures),such that for all functions p(x)of degree 2n−1

where w(x)is the weight function and here this weight function is wα,β(u(x)).This is worth noticing that

{ti,are Jacobi Gauss-Lobatto quadratures nodes and weights.

Proof See Ref.[46]. ?

将树脂脱附液的pH用废酸调至5,加入1 500 mg/L的Fe2+,然后加入过量的30%的过氧化氢溶液,搅拌反应2 h,反应结束后用Ca(OH)2饱和溶液调至中性沉淀10~12 h。

In FPEs[a,b]=[0,1],u(x)=2x−1,then∫

based in the last theorem,when p(x)∈Pm,m>2n−1,the above relation between integral and summation is not exact;it produces an error term as

where ξ∈(a,b).Hence,

For two arbitrary functions g1(x)and g2(x)we define

then forwe have

In the same fashion,for

As er[q(x)]=0,as long as q(x)∈Pm,m≤2n−1.Obviously,if any of the above terms’degree is less and equal than 2n−1,the error of that term will be zero.In numerical examples,this error is shown and discussed.

With Eqs.(26)and(33)the following relations in xkwill be obtained:(j=i,i+1)

in which D[k,:]means that the k-th row of matrix D is taken.Now,by taking xkinto account.k=0,...,n

Comparing with the system in Eq.(30)we solved,V is the error term vector:V is defined as:

for k=1,...,n−1,and v0=0,vn=0.

Now,by multiplying Eq.(25)with(x)wα,β(x)and integration in both sides:

4 Numerical Examples

In this section,in order to illustrate the performance of the GLJGL collocation method,we give some computations based on preceding sections,to support our theoretical discussion.By the aid of the presented method,linear and nonlinear forms of FPEs are solved.To illustrate the good accuracy of these methods,we apply different error criteria:The root-mean-square(RMS),Ne,and L2errors.

where y(xj)and yn(xj)are exact and approximate value of FPEs on equidistant xj,j=1,...,r.

As FPEs are defined over[0,1],the shifting function u(x),considered in Subsecs.2.2 and 2.3,is u(x)=2x−1.

The CPU time for calculation of matrices D(1)and D(2),defined in Subsec.2.3,is brought in Table 1.

Table 1 CPU time(sec)for calculation of derivative matrices for different values of n.

n CPU time of D(1) CPU time of D(2)0.615 999 99 0.683 999 99 7 0.623 999 99 0.704 000 00 10 0.643 999 99 0.768 000 00 15 0.760 000 00 0.847 999 99 20 0.839 999 99 0.963 999 99 25 1.232 000 00 1.388 000 00 5

The CPU time is performed on a DELL laptop with the configuration:Intel(R)Core(TM)i7-2670QM CPU,2.20 GHz;and 6 GB RAM.

Example 1 Consider Refs.[2,6,11]Eq.(1)with:A(x)=−1,B(x)=1,f(x)=x,x∈[0,1].

The exact solution of this test problem is y(x,t)=x+t.In this example E0,k=0,E1,k=−A(xk)=1,and E2,k=B(xk)=1 for k=1,...,n−1.

As stated earlier,if the order of terms in Eq.(35)is less than 2n,the error terms vanish;so,the error vector for Ex.1,V in Eq.(35),can be simplified as

In Table 2,the numerical absolute errors of Example 1,and their comparison with B-Spline method are displayed.Table 3,by representing the values of RMS and Neerrors,reveals the difference between the presented method and both HRBF and Kansa’s approaches.[6]

In Fig.1,RMS,L2and Neerrors,for different values of n and∆t,have been illustrated.Figure 2 shows the plot of error for Ex.1.

Table 2 Numerical absolute errors of the method for Ex.1,in comparison with B-Spline method.[2]n=20,∆t=0.01,α=0,β=1.

x=0.2 x=0.4 x=0.6 x=0.8 t B-Spline Presented B-Spline Presented B-Spline Presented B-Spline Presented method method method method 0.01 3.10×10−10 1.93×10−98 4.80×10−10 7.20×10−99 7.40×10−10 3.01×10−98 1.10×10−9 3.12×10−98 0.05 1.20×10−9 2.69×10−98 1.80×10−9 2.32×10−98 2.70×10−9 5.33×10−98 3.80×10−9 3.41×10−98 0.1 3.10×10−10 1.91×10−98 4.80×10−10 1.39×10−98 7.40×10−10 2.21×10−98 1.10×10−9 1.81×10−98 0.15 2.00×10−9 3.86×10−98 2.60×10−9 6.20×10−99 3.10×10−9 2.37×10−98 2.90×10−9 8.72×10−98 1 1.30×10−6 5.24×10−97 2.00×10−6 3.90×10−97 3.00×10−6 3.97×10−97 4.40×10−6 5.77×10−97

Fig.1 Plot of results for Ex.1,α=0,β=1,r=20.(a)Value of error measurements for different values of∆t.n=20 is fixed;(b)Value of error measurements for different values of n.∆t=0.01 is fixed.

Fig.2 Plot of absolute error of Ex.1,α=0,β=1,r=20,∆t=0.01,n=20.

Example 2 Consider Refs.[2,6,11]the backward Kolmogorov Eq.(4)with:A(x,t)=−(x+1),B(x,t)=x2et,f(x)=x+1,x∈[0,1].

The exact solution of this test problem is y(x,t)=(x+1)et.In this example E0,k=0,E1,k=−A(xk,t)=

Table 4 depicts the numerical absolute errors of Ex.2 and draws a distinction with the presented method and BSpline method.For showing the accuracy,the differences between the presented method and HRBF and Kansa’s approaches[6]are shown by calculating RMS and Nein Table 5.In Fig.3,the error measurements RMS,L2and Neare shown for different n and∆t.In this figure,CPU times have been depicted for different n and∆t.It explicitly says that when n increases or∆t decreases,the time of solving the system of Eq.(30)increases.As it shows,when∆t tends to a smaller value,it affects and decreases all RMS,Ne,L2and absolute errors.The plot of absolute error for Ex.2 is also shown in Fig.4.

Table 3 Values of RMS and Nefor Ex.1 in comparison with HRBF and Kansa’s approaches.r=20,∆t=0.01.

GLJGL-c(n=15) HRBF without time-discretization[6] Kansa’s approach[6]α β RMS Ne n RMS Ne RMS Ne−0.5 −0.5 4.2×10−99 9.7×10−99 25 6.4×10−5 1.4×10−4 1.22×10−2 2.81×10−2−0.5 0.53.4×10−99 7.8×10−99 36 9.9×10−6 2.3×10−5 6.52×10−4 1.50×10−3 0.5 −0.54.2×10−99 9.7×10−99 49 1.2×10−6 2.8×10−5 5.83×10−5 1.34×10−4 0.5 0.55.6×10−99 1.2×10−98 64 7.7×10−8 1.8×10−7 1.71×10−5 3.93×10−5 0 01.1×10−99 2.5×10−99 81 1.6×10−8 3.8×10−8 4.00×10−6 9.20×10−6 0 17.8×10−100 1.7×10−99 100 2.2×10−9 5.1×10−9 1.53×10−6 3.51×10−6

Table 4 Numerical absolute errors of the method for Ex.2,in comparison with B-Spline method.[2]n=20,∆t=0.01,α=0,β=1.

x=0.2 x=0.4 x=0.6 x=0.8 t B-Spline Presented B-Spline Presented B-Spline Presented B-Spline Presented method method method method 0.01 1.80×10−7 1.02×10−7 2.10×10−7 1.21×10−7 2.40×10−7 1.24×10−7 2.70×10−7 1.56×10−7 0.05 2.00×10−8 5.04×10−7 2.30×10−8 5.80×10−7 2.70×10−8 7.10×10−7 3.00×10−8 7.90×10−7 0.1 1.80×10−7 1.10×10−6 2.10×10−7 1.21×10−6 2.40×10−7 1.40×10−6 2.70×10−7 1.60×10−6 0.15 1.90×10−7 1.78×10−6 2.20×10−7 1.87×10−6 2.60×10−7 2.46×10−6 2.90×10−7 1.93×10−6 1 7.40×10−7 1.59×10−5 8.70×10−7 8.47×10−6 9.90×10−7 9.00×10−6 1.10×10−6 5.70×10−6

Fig.3 Plot illustration results of Ex.2,α=0,β=1,r=20.(a)CPU times for solving Eq.(30)for different values of∆t and n.(b)Value of error measurements for different values of∆t.n=20 is fixed.(c)Plot of absolute error for different values of∆t.n=20 is fixed.(d)Value of error measurements for different values of n.∆t=0.01 is fixed.

Fig.4 Plot of absolute error of Ex.2 for 15 collocation points.α=0,β=1,∆t=0.01.

Example 3 Consider Refs.[2,6,11]the nonlinear Eq.(5)with:A(x,t,y)=(7/2)y,B(x,t,y)=xy,f(x)=x,x∈[0,1].

The exact solution of this test problem is y(x,t)=x/(1+t).By this consideration,Eq.(5)can be rewritten as

By Eqs.(23)and(36)one can set:

The error vector,V in Eq.(35),for Ex.2 and 3 is

By the aid of Table 6.the numerical absolute errors for Ex.3 demonstrated and a comparison with the B-Spline method is made.For this example,also,RMS and Neare compared with the ones provided by HRBF[6]in Table 7.

Table 5 Values of RMS and Nefor Ex.2 in comparison with HRBF and Kansa’s approaches.r=50,∆t=0.01.

GLJGL-c(n=10) HRBF without time-discretization[6] Kansa’s approach[6]α β 2.0×10−3 1.0×10−3 25 2.23×10−4 1.73×10−4 7.94×10−2 2.74×10−2−0.5 0.5−0.5 −0.5 RMS Ne n RMS Ne RMS Ne 1.1×10−6 8.8×10−7 36 1.61×10−4 1.13×10−4 1.12×10−2 3.94×10−3 0.5 −0.51.0×10−2 9.0×10−3 49 8.61×10−5 8.29×10−5 2.04×10−3 7.23×10−4 0.5 0.51.1×10−6 8.3×10−7 64 2.26×10−6 2.38×10−6 1.54×10−3 5.46×10−4 0 02.3×10−6 1.7×10−6 81 1.76×10−7 1.35×10−7 6.18×10−5 2.18×10−5 0 11.1×10−6 8.1×10−7 100 7.51×10−8 7.84×10−8 6.11×10−6 2.19×10−6

Table 6 Numerical absolute errors of the method for Ex.3,in comparison with B-Spline method.[2]n=10,∆t=0.001,α=1,β=1.

x=0.2 x=0.4 x=0.6 x=0.8 t B-Spline Presented B-Spline Presented B-Spline Presented B-Spline Presented method method method method 0.005 8.90×10−7 5.06×10−7 1.80×10−6 1.02×10−6 2.70×10−6 1.41×10−6 3.60×10−6 1.90×10−6 0.01 1.60×10−6 9.90×10−7 3.20×10−6 2.01×10−6 4.70×10−6 2.80×10−6 6.30×10−6 3.79×10−6 0.05 3.20×10−6 4.42×10−6 6.40×10−6 8.89×10−6 9.60×10−6 1.32×10−5 1.30×10−5 1.75×10−5 0.1 1.60×10−6 7.80×10−6 3.20×10−6 1.55×10−5 4.70×10−6 2.39×10−5 6.30×10−6 3.20×10−5 0.15 3.80×10−6 1.05×10−5 7.60×10−6 2.09×10−5 1.10×10−5 3.18×10−5 1.50×10−5 4.32×10−5 1 1.10×10−6 1.74×10−5 2.20×10−6 3.50×10−5 3.30×10−6 3.80×10−5 4.40×10−6 2.21×10−5

Table 7 Values of RMS and Nefor Ex.3 in comparison with HRBF approach.r=50,∆t=0.001.

GLJGL-c(n=7) HRBF without time-discretization[6] HRBF with time-discretization[6]α β RMS Ne n RMS Ne n RMS Ne−0.5 −0.5 1.9×101 7.8×101 25 1.49×10−2 1.35×10−2 35 9.14×10−6 3.86×10−5−0.5 0.52.4×103 1.0×104 36 1.70×10−2 1.54×10−2 40 7.17×10−7 9.83×10−7 0.5 −0.55.2×10−10 2.1×10−9 49 7.00×10−3 6.35×10−3 45 5.72×10−9 8.35×10−9 0.5 0.55.2×10−10 2.1×10−9 64 1.41×10−3 9.73×10−4 1 15.2×10−10 2.1×10−9 81 5.34×10−4 3.12×10−4

Fig.5 Plot illustration results of Ex.3,α=1,β=1,r=50.(a)CPU times for solving Eq.(30)for different values of∆t and n.(b)Value of error measurements for different values of∆t.n=10 is fixed.(c)Plot of absolute error for different values of∆t.n=10 is fixed.(d)Value of error measurements for different values of n.∆t=0.001 is fixed.

Fig.6 Plot of absolute error of Ex.3 for 7 collocation points.α=1,β=1,∆t=0.001.

Figure 5 shows the values of RMS,L2and Neerrors for different n and∆t.This Figure,illustrates the CPU times for solving the system of Eq.(30)for different n and∆t.It shows that when n increases or∆t decreases,the time of obtaining solution will increase.The fact is,as∆t becomes smaller,RMS,Ne,L2and absolute errors decrease.The plot of absolute error for Ex.3 is also shown in Fig.6.

Example 4 Consider Refs.[2,6,11]the nonlinear Eq.(5)with:A(x,t,y)=4(y/x)−x/3,B(x,t,y)=y,f(x)=x2,x∈[0,1].

The exact solution of this test problem is y(x,t)=x2et.This nonlinear FPEs can be restated as

It must be noted that:the way this relation is factorized is playing a central role in the exactness of solution.By Eqs.(23)and(37):

For Ex.4,the error vector specified in Eq.(35)is

for k=1,...,n−1 and v0=0,vn=0.

In Table 8,the numerical absolute errors for Ex.4 demonstrated and a comparison with the B-Spline method is given.The error measurements RMS and Neare calculated by the presented method and HRBF[6]method and the results depicted in Table 9.Figure 7 illustrates the values of RMS,L2and Neerrors for different n and∆t.This Figure,also,illustrates the CPU times for solving the system of Eq.(30)for different n and∆t.It implies that when n increases or∆t decreases,the time of obtaining solution increases.In fact,when∆t becomes smaller,RMS,Ne,L2and absolute errors will decrease.The plot of absolute error for Ex.4 is also shown in Fig.8.

Fig.7 Plot illustration results of Ex.4,α=1,β=1,r=50.(a)CPU times for solving Eq.(30)for different values of∆t and n.(b)Value of error measurements for different values of∆t.n=7 is fixed.(c)Plot of absolute error for different values of∆t.n=7 is fixed.(d)Value of error measurements for different values of n.∆t=0.001 is fixed.

Table 8 Numerical absolute errors of the method for Ex.4,in comparison with B-Spline method.[2]n=7,∆t=0.001,α=1,β=1.

x=0.2 x=0.4 x=0.6 x=0.8 t B-Spline Presented B-Spline Presented B-Spline Presented B-Spline Presented method method method method 0.001 8.90×10−10 2.02×10−12 3.60×10−9 1.38×10−11 8.00×10−9 3.09×10−11 1.40×10−8 4.87×10−11 0.005 3.80×10−9 1.69×10−11 1.50×10−8 6.69×10−11 3.40×10−8 1.50×10−10 6.00×10−8 2.59×10−10 0.01 6.00×10−9 3.34×10−11 2.40×10−8 1.34×10−10 5.40×10−8 3.02×10−10 9.60×10−8 4.57×10−10 0.05 6.40×10−10 1.75×10−10 2.60×10−9 6.74×10−10 5.80×10−9 1.21×10−9 1.00×10−8 1.19×10−9 0.1 6.00×10−9 3.60×10−10 2.40×10−8 1.19×10−19 5.40×10−8 1.80×10−9 9.60×10−8 1.55×10−9 0.15 6.40×10−9 5.20×10−10 2.60×10−8 1.53×10−9 5.80×10−8 2.13×10−9 1.00×10−7 1.73×10−9 1 2.50×10−8 9.42×10−10 9.80×10−8 2.09×10−9 2.20×10−7 2.59×10−9 3.90×10−7 1.99×10−9

Table 9 Values of RMS and Nefor Ex.4 in comparison with HRBF approach.r=50,∆t=0.001.

GLJGL-c(n=5) HRBF without time-discretization[6] HRBF with time-discretization[6]α β 6.6×10−6 5.5×10−5 25 6.8×10−3 9.9×10−3 35 8.4×10−6 2.9×10−5−0.5 0.5−0.5 −0.5 RMS Ne n RMS Ne n RMS Ne 6.7×10−6 5.7×10−5 36 1.9×10−3 4.0×10−3 40 6.4×10−7 8.1×10−7 0.5 −0.56.6×10−6 5.5×10−5 49 3.2×10−4 6.6×10−4 45 7.2×10−8 9.3×10−8 0.5 0.56.0×10−6 5.0×10−5 64 1.1×10−4 2.4×10−4 1 16.7×10−6 5.5×10−5 81 6.4×10−5 7.8×10−5

Fig.8 Plot of absolute error of Ex.4,α=1,β=1,∆t=0.001,n=7.

5 Conclusion

The(linear and nonlinear)FPEs have many applications in science and engineering.So,in this work,a numerical method based on GLJGL collocation method is discussed and developed to investigate FPEs.Firstly,we introduced GL functions with the Kronecker property.The advantages of using GL functions can be:

(i)These functions are the generalization of the classical Lagrange polynomials and corresponding differentiation matrices of D(1)and D(2),as shown,can be reached by specific formulas;this helps create and introduce a derivative-free method.

(ii)With different consideration of u(x),different basis of GL functions are provided;therefore,different problems defined on various intervals can be solved.

(iii) The accuracy of the presented method by GL function has exponential convergence rate.

Moreover,the time derivative of the FPEs is discretized using Crank-Nicolson method.The main reason for using Crank-Nicolson method is its unconditional stability.[3,45]

By the aid of Crank-Nicolson technique,we solved the linear and nonlinear types of FPEs with GLJGL collocation method.We apply the pseudospectral method in a matrix based manner where the matrix based structure of the present method makes it easy to implement.Also,to show the accuracy and ability of the proposed method,several examples are solved.

Several examples are given and the results obtained using the method introduced in this article show that the new proposed numerical procedure is efficient

The results showed that the approximate solutions of the GLJGL collocation method can be acceptable and provides very accurate results even with using a small number of collocation points.To illustrate the suitable accuracy of the proposed method,we used three different error criteria,namely,RMS,L2and Ne.Additionally,the obtained results have been compared with B-Spline,HRBF and Kansa methods,showing the accuracy and reliability of the presented method.

This method can also be used as a powerful tool for investigation of other problems.

References

[1]H.Risken,The Fokker-Planck Equation:Method of Solution and Applications,Springer Verlag,Belin,Heidelberg(1989).

[2]M.Lakestani and M.Dehghan,Numer.Method.Part.D.E 25(2009)418.

[3]M.Dehghan and V.Mohammadi,Eng.Anal.Bound.Elem.47(2014)38.

[4]S.Jenks,Introduction to Kramers Equation,Drexel University,Philadelphia(2006).

[5]A Compte and D Jou,J.Phys.A-Math.Gen.29(1996)4321.

[6]S.Kazem,J.A.Rad,and K.Parand,Eng.Anal.Bound.Elem.36(2012)181.

[7]V.Palleschi,F.Sarri,G.Marcozzi,and M.R.Torquati,Phys.Lett.A 146(1990)378.

[8]V.Palleschi and N.de Rosa,Phys.Lett.A 163(1992)381.

[9]V.Vanaja,Appl.Numer.Math.9(1992)533.

[10]M.P.Zorzano,H.Mais,and L.Vazquez,Appl.Math.Comput.98(1999)109.

[11]M.Dehghan and M.Tatari,Physica Scripta 74(2006)310.

[12]M.Tatari,M.Dehghan,and M.Razzaghi,Math.Comput.Model.45(2007)639.

[13]M.F.Wehner and W.G.Wolfer,Phys.Rev.A 35(1987)1795.

[14]J.J.Brey,J.M.Casado,and M.Morillo,Phys.A 128(1984)497.

[15]D.S.Zhang,G.W.Wei,D.J.Kouri,and D.K.Ho ff man,Phys.Rev.E 56(1997)1197.

[16]A.N.Drozdov and M.Morillo,Phys.Rev.E 54(1996)931.

[17]A.H.Bhrawy,M.A.Abdelkawy,J.T.Machado,and A.Z.M.Amin,Comput.Math.Appl.2016:doi.org/10.1016/j.camwa.2016.04.011.

[18]A.H.Bhrawy,Numer.Algorithm.73(2016)91.

[19]K.Parand and M.Delkhosh,J.Comput.Appl.Math.317(2017)624.

[20]K.Parand and M.Delkhosh,Boletim da Sociedade Paranaense de Matem´atica 36(2018)33.

[21]A.H.Bhrawy and M.M.Al-Shomrani,Adv.Di ff er.E 2012(2012)8.

[22]E.H.Doha and A.H.Bhrawy,Appl.Numer.Math.58(2008)1224.

[23]A.H.Bhrawy and M.M.Alghamdi,Boundary Value Prob.2012(2012)62.

[24]H.Tal-Ezer,J.Numer.Anal.23(1986)11.

[25]H.Tal-Ezer,J.Numer.Anal.26(1989)1.

[26]A.H.Bhrawy and M.M.Al-Shomrani,Abstr.Appl.Anal.(2012).

[27]A.H.Bhrawy,E.H.Doha,M.A.Abdelkawy,and R.A.Van Gorder,Appl.Math.Model.40(2016)1703.

[28]K.Parand,M.Delkhosh,and M.Nikarya,Tbilisi Math.J.10(2017)31.

[29]F.Baharifard,S.Kazem,and K.Parand,Inter.J.Appl.Comput.Math.2(2016)679.

[30]E.H.Doha,A.H.Bhrawy,D.Baleanu,and S.S.Ezz-Eldien,Adv.Di ff er.E 2014(2014)231.

[31]J.P.Boyd,Chebyshev and Fourier Spectral Methods,Second Edition,Dover,New York(2000).

[32]K.Parand and M.Hemami,Int.J.Appl.Comput.Math.3(2016)1053.

[33]K.Parand and M.Hemami,Iranian J.Sci.Technol.T.A.Science 41(2015)677.

[34]M.A.Saker,Romanian J.Phys.2017(2017)105.

[35]A.H.Bhrawy,M.A.Abdelkawy,and F.Mallawi,Boundary Value Prob.2015(2015)103.

[36]E.H.Doha,A.H.Bhrawy,and M.A.Abdelkawy,J.Comput.Nonlin.Dyn.10(2015)021016.

[37]K.Parand,S.Lati fi,and M.M.Moayeri,SeMA J.(2017).

[38]M.Delkhosh and K.Parand,Generalized Pseudospectral Method:Theory and Application,Submitted.

[39]K.Parand,S.Lati fi,M.Delkhosh,and M.M.Moayeri,Eur.Phys.J.Plus.133(2018)28.

[40]A.H.Bhrawy and M.Zaky,Math.Method Appl.Sci.39(2015)1765.

[41]A.H.Bhrawy,J.F.Alzaidy,M.A.Abdelkawy,and A.Biswas,Nonlin.Dyn.84(2016)1553.

[42]A.H.Bhrawy,E.H.Doha,S.S.Ezz-Eldien,and M.A.Abdelkawy,Comput.Model.Eng.Sci.104(2015)185.

[43]A.H.Bhrawy,E.H.Doha,D.Baleanu,and R.M.Hafez,Math.Method Appl.Sci.38(2015)3022.

[44]E.H.Doha,A.H.Bhrawy,and S.S.Ezz-Eldien,Appl.Math.Model.36(2012)4931.

[45]A.R.Mitchell and D.F.Griffiths,The Finite Di ff erence Methods in Partial differential Equations,John Wiley,Chichester(1980).

[46]J.Shen,T.Tang,and L.L.Wang,Spectral Methods:Algorithms,Analysis and Applications,Springer Sci.Bus.Media.41(2011).

K.Parand,S.Latifi,M.M.Moayeri,andM.Delkhosh
《Communications in Theoretical Physics》2018年第5期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号