更全的杂志信息网

Modeling Chemically Reactive Flow of Sutterby Nano fluid by a Rotating Disk in Presence of Heat Generation/Absorption

更新时间:2016-07-05

1 Introduction

Heat transfer has numerous applications in various fields such as heat exchangers,combustors,centrifugal and axial blades compressor,microelectronic boards circuit,gas turbines blades,computer processer,fuel cells,hybridpowered engines,refrigerators,air-conditioners,and many others.Heat transfer fl uids effectively depend on their physical characteristics such as heat capacity,density,viscosity,and thermal conductivity.The primary barrier for transfer heat is small thermal conductivity of fluids.Thus,it is necessary to make out the mechanisms through,which the thermal conductivity can be improved.An innovative procedure for increasing heat transfer through mixing ultra fine solid particles in base liquids has been extensively used.The word nano fluids is referred to these types of liquids by suspending particles(nano-scale)in the base liquids.First time the word nano fluids was developed by Choi.[1]Then Buongiorno[2]proposed a model to analyze heat transfer enhancement in the nano fluids.He studied seven slip phenomena such that Brownian diffusion,Magnus, fluid drainage,inertia,gravity,diffusiophoresis,and thermophoresis.He clarified that Brownian diffusion and thermophoresis are ruling slip phenomena in the nanoliquids.Lin et al.[3]addressed MHD in flow of pseudoplastic nanoliquids.Abbasi et al.[4]characterized flow of nano fluids past a moving sheet.Hayat et al.[5]discussed flow of silver and copper water nanoliquids with thermal radiation and nonlinear convection.Malvindi et al.[6]studied thermal characteristics in hydromagnetics Al2O3-water nanoliquids in a microannular cylinder.Shape effects of nano-scale particles in Cu-H2O nanoliquids on entropy generation are explored by Ellahi et al.[7]Effect of MHD on CuO-water nano fluids with mixed convection is examined by Shekholeslami et al.[8]Stagnation point flow of viscoelastic nanoliquid with MHD and nonlinear thermal radiation is explored by Farooq et al.[9]Hayat et al.[10]evaluated impact of Hall,heating and ion effects on the flow of Jeffrey nano fluid.

Mass and heat transfer problems with chemical reaction have a considerable attention.Mass and heat transfer effects simultaneously occurs in many processes i.e.evaporation,drying, flow in a dessert cooler,energy exchange in a cooling tower,in curing of plastic chemical processing,and cleaning of materials and manufacturing of insulated cables and pulp.Postelnicu[11]evaluated effect of chemical reaction on mass and heat transfer through convection over a vertical sheet with porous medium and Dufour and Soret effects.Rout et al.[12]studied the characteristic of chemical reaction and convective boundary constraints in flow over a vertical surface.Shehzad et al.[13]examined chemical reaction in MHD flow of nanoliquids.Raddya et al.[14]examined influence of rotation and chemical reaction in MHD flow of nanoliquids.Hayat et al.[15]explored chemical reaction in MHD flow of nano fluids.

In nature there are various materials having diverse features.Navier-Stokes theory is incapable to described these types of materials.These materials include synovial fluids,gypsum paste,printer ink,yogurt,clays,hydrogenated caster oil,drilling mud,paints,colloidal suspension,blood,toothpaste ta ff y,mayonnaise,butter,cheese,ketchup,soup,jam,shampoos etc.Therefore various models of non-Newtonian fluids are suggested(see Refs.[16–21]).Here we aim to consider Sutterby fluid model.

This attempt concentrates for Sutterby nano fluid flow due to a rotating stretchable disk. Further magnetic if eld,chemical reaction and heat source effects are evaluated.Appropriate transformation is employed to obtain the nonlinear system of ODE’s.For numerical treatment we use Built-in-Shooting method.[22−25]Influences of introduced parameters on velocity,concentration and temperature are discussed through graphs.Surface drag force,temperature gradient,and concentration gradient are numerically examined through tables.

2 Formulation

We have an interest to examine flow of Sutterby nano fluid due to rotating stretchable disk.Additionally,the magnetic field,chemical reaction and heat source effects are also considered.The disk is at z=0 and fluid occupied the region z>0(see Fig.1).Disk rotates with angular speed w around the z-axies and stretching with rate c in radial direction(r-direction).Brownian motion,thermophoresis,and chemical reaction have been considered.Heat generation/absorption is accounted.Mathematical expressions for considered problem

当前绩效评价结果通常仅仅局限在反映情况这一层次,对绩效评价结果的应用还不够充分,也未能建立起绩效评价结果的长效运用机制。农业科研绩效评价也呈现明显的该趋势。实际工作中,科研人员注重农业科研项目立项和验收的组织,对项目绩效评价的重视却不够,甚至将绩效评价视为一项任务,在此基础上形成的绩效评价结果往往可靠性不够高。尽管要求绩效评价结果应当作为今后项目立项的依据,但由于对评价结果的分析不够,以及项目管理部门、财务部门、项目实施部门配合不够,实际中农业科研项目的绩效评价结果还缺乏长效应用机制。

Fig.1 Systematic diagram.

一要切实加大库区产业扶持力度,鼓励移民依托资源优势开展每家每户都能受益的产业。加强生产开发项目管理,合理确定移民资金的所有权、管理权和收益权,确保项目效益落实到移民村、移民户。大力发展现代农业,积极培育一村一品、一村一业。

In terms of Sutterby fluid model the viscosity relation is chosen as

菲律宾作为海岛国家,旅游资源丰富,赴菲旅游随之逐渐成为旅游界一大热点,中菲旅游业的发展符合一带一路的利益。根据菲律宾旅游部的数据显示,2016年中国赴菲游客总数为67.57万人次,同比增长了37.71%,2017年访问菲律宾的中国游客约达93.9万人次,比上年同期增长了40.52%。虽然我国近几年赴菲律宾游客数量在波动中呈增长的趋势,但菲律宾国内的安全形势并不理想,旅游过程中旅游安全事故频发,中国与菲律宾旅游发展的前景在一定程度上受到旅游安全的影响和制约。

whereµ0,B,and n are positive parameters and∆ the shear rate.Parameterµ0denotes viscosity at low shear rates,B characteristic time and n dimensionless quantity.When n=0 then Sutterby model predicts viscous fluid behavior and for n=1 it reduces to Eyring model.By binomial expansion one can write

Now shear rate(∆)can be defined as

where A1is the first order Rivlin-Erickson tensor define by A1=L+LT.

Flow of Sutterby nano fluid due to rotating stretchable disk has been investigated.Major points are listed below:

continuity relation verified identically and the remaining flow expressions are

Note that Re indicates Reynolds number,ϵ material parameter,M Hartmann number(Magnetic parameter),Pr Prandt number,Sc Schmidt number,A ratio of stretching parameter,γ chemical reaction parameter,β heat source parameter to angular velocity,Nb Brownian parameter and Nt thermophoresis parameter.

Now surface drag force,temperature gradient and Sherwood number can be defined as

where shear stresses τw,rw,ϑ,mass flux Jwand heat flux qware given by

1.3.1 纯林、混交林碳储量估算 本次采用生物量转换因子法(材积源生物量法)对洱海流域的乔木林中的纯林和混交林的森林生物量进行估算,再根据各树种(组)的含碳系数计算碳储量。

• Radial velocity(f(η))is enhanced with A while reduces with Re,n,M,and ϵ.

Substituting Eq.(18)in Eq.(17),we get

where Rer=rhω/ν indicates local Reynolds number.

3 Numerical Solution and Discussion

Numerical values for radial and tangential skin Frictions(CfrRerand CRer)with variation in different variables like dimensionless constant(n),material parameter(ϵ),Reynolds number(Re),Hartmann number(M)and stretching parameter(A)are calculated in Tables 1 and 2.Table 1 shows that surface drag force in radial direction is increased for higher estimation of Reynolds number(Re)and Hartmann number(M)while it decays for dimensionless constant(n),material parameter(ϵ)and stretching parameter(A).Table 2 demonstrates that surface drag force in tangential direction decays through increasing dimensionless constant(n),material parameter(ϵ)and stretching rate(A). On the other hand surface drag force shows increasing behavior for larger values of Reynolds number(Re)and Hartmann number(M).The effects of Brownian motion(Nb),Prandtl number(Pr),thermophoresis(Nt),heat source/sink(β),Reynolds number(Re),Schmidt number(Sc)and chemical reaction(γ)on heat transfer rate(Nur)are computed in Table 3.It is noticed that for increasing values of Brownian parameter,Prandtl number,Reynolds number,Schmidt number and chemical reaction the heat transfer coefficient enhances while it reduces for thermophoresis parameter and heat source/sink.

Table 1 Numerical simulation for CfrRer.

nϵReM ACfrRer 0 0.1 0.4 0.2 0.8 1.478 48 1 1.424 43 2 1.367 39 0.1 1.367 39 0.2 1.246 17 0.3 1.087 97 0.4 1.367 39 0.5 1.410 13 0.6 1.426 18 0.2 1.367 39 0.3 1.447 74 0.4 1.525 71 0.8 1.367 39 0.9 1.251 95 1.0 1.150 34

This section intends to compute the obtained systems numerically through Built-in-Shooting method.Here concentration,temperature and velocity are physically focussed by distinct sundry variables. Attention is particularly given to the upshots of Reynolds number(Re),material parameter(ϵ),Hartmann number(M),Schmidt number(Sc),Prandtl number(Pr),ratio parameter(A),chemical reaction parameter(γ),Brownian variable(Nb),heat source parameter(β)and thermophoresis variable(Nt).Further numerical values of surface drag force,Sherwood number and heat transfer rate are presented in Tables 1–4.

Table 2 Numerical simulation for CRer.

n ϵ Re M A CRer 0 0.1 0.4 0.2 0.8 1.687 98 1 1.614 58 2 1.539 46 0.1 1.539 46 0.2 1.387 16 0.3 1.250 99 0.4 1.539 46 0.5 1.650 43 0.6 1.734 51 0.2 1.539 46 0.3 1.583 36 0.4 1.626 42 0.8 1.539 46 0.9 1.531 81 1.0 1.518 76

Table 3 Numerical simulation for Nur.

Nb Pr Nt β Re Sc γ −θ(0)0.3 1.5 0.4 0.2 0.7 0.1 0.6 0.465 968 0.4 0.492 787 0.5 0.518 591 1.5 0.465 968 1.6 0.474 061 1.7 0.480 876 0.4 0.465 968 0.5 0.408 976 0.6 0.359 573 0.2 0.465 968 0.3 0.361 493 0.4 0.223 317 0.7 0.465 968 0.8 0.517 697 0.9 0.565 794 0.1 0.465 968 0.2 0.496 378 0.3 0.521 207 0.6 0.465 968 0.7 0.470 072 0.8 0.474 021

Table 4 shows the influences of Brownian motion(Nb),Prandtl number(Pr),thermophoresis(Nt),heat source/sink(β),Reynolds number(Re),Schmidt number(Sc)and chemical reaction(γ)on Sherwood number.Clearly for increasing values of Brownian parameter,thermophoresis parameter,heat generation/absorption,Schmidt number,Reynolds number and chemical reaction,Sherwood number enhanced and it is reduced with Prandtl number.

二组菌体生物量均呈现增加的趋势,添加茶碱与未添加茶碱对照比相比,其菌体生物量前者要稍高于后者,说明茶碱能刺激菌体生长。发酵进入第8 d,菌体量开始下降,对照pH值曲线,这可能是由于菌体自溶所引起的。

Table 4 Numerical simulation for Shr.

Nb Pr Nt β Re Sc γ −θ(0)0.3 1.5 0.4 0.2 0.7 0.1 0.6 0.018 149 60 0.4 0.070 587 70 0.5 0.102 805 00 1.5 0.018 149 60 1.6 0.009 205 17 1.7 0.001 814 09 0.4 0.018 149 60 0.5 0.029 996 00 0.6 0.062 580 00 0.2 0.018 149 60 0.3 0.149 923 00 0.4 0.323 010 00 0.7 0.018 149 60 0.8 −0.043 270 3 0.9 −0.100 606 0 0.1 0.018 149 60 0.2 0.127 748 00 0.3 0.227 081 00 0.6 0.081 149 60 0.7 0.033 990 70 0.8 0.049 431 50

Fig.2 f(η)variation for Re.

Figures 2–16 describe the impacts of Reynolds number(Re),dimensionless positive constant(n),material parameter(ϵ),Hartmann number(M)and stretching parameter(A)on radial velocity(f(η)),axial velocity(f(η))and tangential velocity(g(η)).Figures 2–4 show that radial f(η),axial f(η),and tangential g(η)velocities are decreasing functions of Re.Here Re is increasing function of angular speed ω,which yields decrease in velocities.Figures 5–7 sketch the behaviors of radial f(η),axial f(η),and tangential g(η)velocities through variation in n.Clearly velocities(axial,radial,tangential)are reduced by n.Effects of M on f(η),f(η),and g(η)are portrayed in Figures 8–10.It is noted that velocities(f(η),f(η),g(η))decay with variation in M.Since M is directly proportional to resistive force known as Lorentz force,which opposes the fluid motion so f(η),f(η)and g(η)decay.Figures 11–13 depict the influences of ϵ on radial,axial and tangential pro files.Increasing values of material parameter ϵ decrease f(η),f(η)and g(η)velocities.Physically for larger values of material parameter the characteristic time is higher for fl uid and thus reduction occurs in velocities.

Fig.3 f(η)variation for Re.

Fig.4 E ff ect of Re on g(η).

Fig.5 f(η)variation for n.

Fig.6 f(η)variation for n.

Fig.7 E ff ect of n on g(η).

Fig.8 f(η)variation for M.

Figures 14–16 are portrayed to show the influences of parameter A on axial,radial and tangential velocities.For larger A the axial and radial velocities are increasing.It is due to an increase in stretching rate.However tangential velocity decays for larger A.Physically stretching parameter(A)is the ratio of stretching rate(c)and angular speed(ω).For larger values of stretching parameter the stretching rate dominates over angular speed and therefore the axial while radial velocities enhanced and tangential velocity reduced.

Fig.9 f(η)variation for M.

Fig.1 0 g(η)variation for M.

Figures 17–21 captured the influences of Prandtl number(Pr),thermophoresis variable(Nt),Reynolds number(Re),Brownian variables(Nb)and heat source parameter(β)on temperature distribution(θ(η)).Figure 17 illustrates the effect of Prandtl number(Pr)on θ(η).Clearly θ(η)is reduced for higher estimations of Pr.Physically Prandtl number(Pr)is ratio of momentum diffusivity to thermal diffusivity.Thermal diffusivity is predominant for higher values of Prandtl number and so temperature decays.Impact of Nt on θ(η)is portrayed in Fig.18.It is noticed that θ(η)enhanced through larger Nt.Larger estimation of Nt correspond to stronger thermophoretic force and nanoparticales move from warm to cold regions.Therefore temperature field grows.Figure 19 depicts behavior of Reynolds number(Re)on θ(η).Here θ(η)decays for larger estimation of Re.Figure 20 captured variation of Nb for θ(η).For increasing values of Nb the temperature decreases.Effect of heat source(β)on θ(η)is examined in Fig.21.Clearly temperature(θ(η))is enhanced via β.

where u,v,and w denote velocity components,ρ density,µ dynamic viscosity,δ electric conductivity,B0strength of applied magnetic field,T temperature,cpspecific heat,τ heat capacities ratio,DBcoefficient of Brownian diffusion,DTcoefficient of thermophoretic diffusion,Q0heat absorption generation coefficient,Tambient temperature,C concentration,and kreaction rate.

Figures 22–26 demonstrate the effects of Schmidt number(Sc),Reynolds number(Re),Brownian parameter(Nb),thermophoresis parameter(Nt)and chemical reaction(γ)on concentration ϕ(η).

Fig.1 1 f(η)variation for ϵ.

Fig.1 2 Effect of ϵ on f(η).

Fig.1 3 g(η)variation for ϵ.

Fig.1 4 f(η)variation for A.

Fig.1 5 Behavior of A on f(η).

Fig.1 6 Effect of A on g(η).

Fig.1 7 Behavior of Pr on θ(η).

Fig.1 8 Effect of Nt on θ(η).

Fig.1 9 Effect of Re on θ(η).

Fig.2 0 Effect of Nb on θ(η).

Fig.2 1 Effect of β on θ(η).

Fig.2 2 Effect of Sc on ϕ(η).

Fig.2 3 Effect of Re on ϕ(η).

Fig.2 4 Behavior of Nt on ϕ(η).

Fig.2 5 Effect of Nb on ϕ(η).

Fig.2 6 Effect of γ on ϕ(η).

Figure 22 indicates that concentration(ϕ(η))reduces for higher estimation of Schmidt number(Sc).As Sc is the ratio of viscosity to mass diffusivity.Thus for larger Sc the mass diffusivity is smaller than viscosity so the concentration field decays.On the other hand for larger values of Reynolds number the concentration field enhanced(see Fig.23).Physically for larger values of Reynolds number the viscous forces decrease and therefore concentration is enhanced.

生命体征监测设备通过调用Bluetooth 接口,获取自带的蓝牙适配器,并开启蓝牙功能。通过调用蓝牙设备搜索接口函数,对周边的蓝牙设备终端进行扫描,当搜索到匹配的蓝牙适配器时,则进行设备注册、建立连接并停止扫描,至此蓝牙扫描工作完成。扫描并匹配成功的设备名称和设备MAC 地址将分别储存在蓝牙搜索的公有成员变量中,当扫描结束后,会向生命体征监测设备蓝牙适配器发送一个类型为0x01 的句柄消息。同时handleMessage 接口函数也会收到类型为0x01 的消息,扫描程序通过设备遍历对周边的设备进行逐个匹配直到找到符合要求的蓝牙终端设备。

Figure 24 sketched the impact of thermophoresis variable(Nt)on concentration(ϕ(η)).As expected is an ϕ(η)increasing function of Nt.Physically thermophoresis force transmits nanoparticles from warm to cold region.That is why associated thickness of boundary layer is enhanced.Characteristic of Brownian parameter(Nb)on concentration distribution ϕ(η)is evaluated in Fig.25.Dominant behavior of concentration is observed for smaller values of Brownian motion parameter.It is interpreted that for higher Brownian motion parameter(Nb),the collision of fluid particles enhances and concentration decreases.Figure 26 illustrates the influence of chemical reaction variable(γ)on concentration(ϕ(η)).It is noticed that concentration(ϕ(η))reduces with an increase in chemical reaction variable(γ).Physically higher variation of γ correspond to larger rate of destructive chemical reaction which terminates or dissolves the liquid specie more effectively.Therefore concentration pro fi le decays.

4 Conclusion

Considering

近代以前,中国城乡的教育都与科举制度相联系,属传统文化的范畴。有学者指出,在中国传统社会,“一直没有都市优越性的观念,也一直不轻视农村和乡土的生活方式及庶民文化;可以说几乎没有明显独特的都市文化或都市性格。城、乡之间几乎没有界线。乡村常是学术文化中心,书院、藏书楼常在乡间;作为中国传统社会中坚人物的士绅阶级,其活动地点常在乡村”。认为“传统中国文化的主要据点是乡村,中国文化基本上是以乡村文化(农业文化)为特质”。[1]这种局面,在近代随着开埠通商和与工业文明相联系的新式教育的展开发生变化。

• Axial velocity(f(η))boosts via A however it decays through Re,n,M,and ϵ.

•Elevation in Pr,Re and Nb corresponds to smaller temperature profile however temperature enhances with Nt and β.

•Concentration pro file decays for Nb,Sc and γ and it boosts via Re and Nt.

•Temperature gradient enhances for larger estimations of Pr,Re,and Nb.

•Velocity gradient is higher for Re and M.Velocity gradient decays through n,ϵ and A.

• Sherwood number boosts via Nb,Sc,γ,Nt,Re,and β.

一杭嘴对着酒壶,将残酒一口气喝光,叫店小二埋了单,挺着肚子扶着楼梯下了楼。风一吹,酒劲涌上来,赶紧扶着一棵斑驳的梧桐树呕吐不止。店小二并不关心出门的顾客,“吱呀”一声,将店门关上了。

References

[1]S.U.S.Choi,ASME FED 66(1995)99.

[2]J.Buongiorno,ASME J.Heat Transf.128(2006)240.

[3]Y.Lin,L.Zheng,X.Zhang,et al.,Int.J.Heat Mass Transf.84(2015)903.

[4]F.M.Abbasi,S.A.Shehzad,T.Hayat,and B.Ahmad,J.Magn.Magn.Mater.404(2016)159.

[5]T.Hayat,S.Qayyum,M.Imtiaz,and A.Alsaedi,Int.J.Heat Mass Transf.102(2016)723.

[6]A.Malvandi,A.Ghasemi,and D.D.Ganji,Int.J.Thermal Sci.109(2016)10.

[7]R.Ellahi,M.Hassan,and A.Zeeshan,Int.J.Heat Mass Transf.81(2015)449.

[8]M.Sheikholeslami,M.G.Bandpy,R.Ellahi,and A.Zeeshan,J.Magn.Magn.Mater.369(2014)69.

[9]M.Farooq,M.I.Khan,M.Waqas,et al.,J.Mol.Liq.221(2016)1097.

[10]T.Hayat,M.Sha fi que,A.Tanveer,and A.Alsaedi,J.Magn.Magn.Mater.407(2016)51.

[11]A.Postelnicu,Heat Mass Transf.43(2007)595602.

[12]B.R.Rout,S.K.Parida,and S.Panda,Int.J.Chem.Eng.2013(2013)296834.

[13]S.A.Shehzad,T.Hayat,M.Qasim,and S.Asghar,Braz.J.Chem.Eng.30(2013)187.

[14]J.V.R.Reddy,V.Sugunamma,N.Sandeep,and C.Sulochana,J.Nigerian Math.Soci.35(2016)48.

[15]T.Hayat,M.Rashid,M.Imtiaz,and A.Alsaedi,AIP Advances 5(2015)067169.

[16]T.Hayat,M.I.Khan,M.Waqas,et al.,Chin.J.Chem.Eng.25(2016)257.

[17]M.M.Rashidi,S.Bagheri,E.Momoniat,and N.Freidoonimehr,Ain Shams Eng.J.8(2017)77.

[18]M.Khan,W.A.Khan,and A.S.Alshomrani,Int.J.Heat Mass Transf.101(2016)570.

[19]A.K.A.Hakeem,S.Saranya,and B.Ganga,J.Mol.Liq.230(2017)445.

[20]T.Hayat,S.Ahmad,M.I.Khan,and A.Alseadi,Results Phys.7(2017)3419.

[21]T.Hayat,M.I.Khan,M.Farooq,T.Yasmeen,and A.Alsaedi,J.Mol.Liq.220(2016)49.

[22]T.Hayat,M.Tamoor,M.I.Khan,and A.Alsaedi,Results Phys.6(2016)1031.

[23]T.Hayat,M.I.Khan,S.Qayyum,and A.Alsaedi,Chin.J.Phys.55(2017)2501.

[24]T.Hayat,M.I.Khan,M.Tamoor,et al.,Res.Phys.7(2017)1824.

[25]M.I.Khan,M.Waqas,T.Hayat,and A.Alsaedi,J.Colloid Interface Science 498(2017)85.

T.Hayat,SalmanAhmad,M.IjazKhan,andA.Alsaedi
《Communications in Theoretical Physics》2018年第5期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号