更全的杂志信息网

基于断层活动资料的鄂尔多斯块体周缘未来30年大地震危险性研究

更新时间:2016-07-05

0 引言

鄂尔多斯块体(图1)位于中国北部,块体内部为较稳定的盆地构造,地震活动性较弱;块体周缘为一系列活动构造所包围,历史上多次发生大地震(7级以上历史地震如图1所示).同时,块体周缘人口密集,山西城市群、关中城市群、呼包城市群、宁夏平原城市群等围绕块体呈环带状分布,形成了环绕鄂尔多斯块体的高地震风险区域.自从1920年海原M8.5地震和1927年古浪M8.0地震后,块体周缘未发生过M6.5以上地震,至今已有近100年的平静期.块体周缘未来30年的大地震活动性如何,是值得关注的问题.因此,考虑到大地震的复发规律,为筹划应急备灾工作,鄂尔多斯块体周缘未来30年的地震危险性值得深入研究.

鄂尔多斯块体周缘的地震学、地质学研究一直受到地震学界的高度关注.邓起东等(1999)研究了鄂尔多斯块体的新生代构造活动和动力学机制,给出了块体周缘主要断裂的产状、年代、活动特征等资料.高立新等(2012)研究了块体周缘地震活动特征,给出了块体北缘的低b值区和对应的大地震危险区.鄂尔多斯块体西缘属于南北地震带北段的一部分,邵志刚和张浪平(2013)研究了南北地震带北段近期强震趋势,认为需要关注甘东南、西秦岭地区发生7级地震的可能.

另外,对块体周缘主要活动断裂的活动特征的研究也广泛开展,如对华山北麓断裂(杨源源,2013)、六盘山东麓断裂(向宏发等,1999)、罗云山山前断裂(孙昌斌等,2013)、渭河断裂(师亚芹等,2007)、口泉断裂(谢新生等,2003)、西秦岭北缘断裂(曹娟娟等,2003)等的研究,获得了各断裂的构造参数、古地震资料、滑动速率等数据,为本文的研究提供了参考.

在应急备灾所考虑的10—30年时间尺度的地震危险性研究方面,国内外其他区域有了一些研究进展.美国、日本等地震灾害严重的国家都重视十年尺度的地震灾害评估或预测,作为国家减灾工作的重要内容(CEESS, 1992; NLAJ, 1997).2007年,美国的USGS、加州地质调查局(California Geological Survey, CGS)、EQECAT公司(美国一家灾难风险模型软件和咨询公司)等机构合作,分别建立了加州地区时间独立和时间相依的地震破裂预测模型(Petersen et al., 2007).该研究分别使用三种时间独立模型和三种时间相依模型,将各模型加权平均,分别计算了时间独立和时间相依模型下,加州地区从2006年起未来30年10%超越概率的峰值加速度图.2016年6月,日本出版了最新的《全国地震动预测地图2016年版》(EIRPC and SSC, 2016).该地图在2014年版地图的基础上加入了近两年对活断层的最新研究成果,对低频度的大地震采取了新的考虑方法,绘出了全日本未来30年地震动分别超越5度弱、5度强、6度弱、6度强的概率分布图.

图1 鄂尔多斯块体及周缘地区 Fig.1 Ordos Block and surrounding areas

本文在以上研究的基础上,采用鄂尔多斯块体周缘断层滑动速率资料和历史地震古地震资料,建立了块体周缘的面源断层源组合模型,计算了块体周缘未来30年Ⅷ度地震动的超越概率分布图,并且同《中国地震动参数区划图》(GB18306-2015)(中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,2015)的地震危险性模型进行了比较,为确定块体周缘未来30年大地震应急备灾工作重点地区提供参考.

1 震源模型的建立

1.1 鄂尔多斯块体周缘的潜在震源区面源模型

1.2.2节已经提到,震源模型中的面源模型包含所有4~6.5级地震的地震活动性,参数与《五代图》中4~6.5级地震的活动性参数相同.因此,还须确定一般断层源和特征断层源的地震活动性参数.由于断层源与构造源的分布不完全重合,断层源无法直接使用构造源的活动性参数.本文使用Anderson和Luco(1983)提出的断层滑动速率和地震发生率的关系式计算断层源的地震活动性:

1.2 本文的震源模型

1.2.1 震源模型的组成

潜在震源区面源模型的局限性在于,大地震会产生大面积的断层破裂,面源模型使用的椭圆衰减关系有时可能无法精确反映特大地震特殊的破裂面形态产生的地震动分布情况.因此,本文对大地震考虑断层破裂的空间结构.

断层源模型(Fault source model)是当前国际上普遍使用的震源模型,如在欧洲的地震危险性分析工作(Giardini et al., 2013)和中东的地震危险性分析工作(Danciu et al., 2017)中都使用了断层震源模型.

图2 《五代图》中划分的鄂尔多斯块体周缘潜在震源区示意图 Fig.2 Source model surrounding Ordos Block built by the fifth China Seismic Zoning Map

由于我国当前的地震危险性分析思想通常假定M4.0~5.0的地震可能发生在任何位置,因此如果只使用断层源,可能会遗漏背景地区的地震活动性.Danciu等(2015)的震源模型使用将面源模型和断层源模型分别取0.4和0.6的权重,再求和的方法.这种方法的问题在于,由于断层源不包含背景地区的地震活动性,因此求和后背景地区的地震活动性只相当于原面源模型的40%,可能会低估或遗漏背景的地震活动性.

为了真实、完整地描述震源的地震活动性,本文考虑建立面源和断层震源的组合模型,包括面源、一般断层源、特征断层源.

其次,彰显中国抗战在世界反法西斯战争中的重要地位。中国是二战的东方主战场,中国在抗战中的巨大民族牺牲同样也是为世界反法西斯战争做出的牺牲。针对长期以来国际社会对中国抗战历史及其地位存在的认识盲区和误区,我们通过各种纪念活动予以广泛地宣传和澄清,得到越来越多的关注和认可。

1.2.2 断层源的起算震级

全部数据量化后建立数据库,使用SPSS 20.0进行统计分析,计量资料以均数±标准差表示,组间比较采用t检验,计数资料以频数及百分率表示,组间比较采用秩和检验或Fisher确切概率法,护士职业倦怠与工作场所暴力之间相关性采用Pearson相关分析,对护士职业倦怠影响因素进行多元线性回归分析,以P<0.05为差异有统计学意义。

震源模型中,面源、一般断层源、特征断层源分别描述低震级、中强震、大地震的地震活动性.考虑到M6.5以上的地震通常破裂尺度较大,本文假设4~6.5级地震的活动性分布与《五代图》相同,6.5级以上的地震仅能发生在大型断层的断层面上.因此,设定一般断层源的起算震级为6.5级.面源的划分采用《五代图》的潜在震源区,将面源的地震活动性在6.5级处截断,仅保留M4~6.5的地震活动性.为了描述大地震周期复发的时间非平稳性质,本文考虑将特征断层源的起算震级设为Mμ-0.5,Mμ为该断层源的震级上限.依据震级和大地震复发特征划分的震源模型如图3所示.

图3 震源模型划分示意图 Fig.3 The segmentation of source model

1.2.3 一般断层源地震活动性参数的确定

第五代《中国地震动参数区划图》(GB18306-2015,以下简称《五代图》)(中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,2015)在传统的概率地震危险性分析(PSHA)方法(Cornell, 1968)基础上,采用了能够反映中国地震活动时空不均匀特征的CPSHA(Chinese PSHA)方法(潘华等,2013).采用地震统计区-地震构造区-潜在震源区三级震源划分思想,其中潜在震源区又分为背景源和构造源(周本刚等,2013).起算震级为M4.0.鄂尔多斯块体周缘地区的潜在震源区分布如图2所示.

(1)

其中,M为震级上限,d为滑动速率,b为G-R关系(Gutenberg and Richter, 1944)中的b值,μ为剪切模量,S为断层面面积,M0M级地震的地震矩.用该式可得到M级地震的复发周期T,进一步可计算得到G-R关系中的a值:

(2)

1.2.4 特征断层源地震活动性参数的确定

根据前文的设定,特征断层源的震级档宽度为0.5级.该震级档内,考虑大地震发生率的时间非平稳性特征,地震活动性不再满足G-R关系,采用时间相依的地震活动性模型.根据李昌珑等(2015)的研究,对于准周期复发的,有(n+1)次历史地震和古地震资料(复发间隔分别为T1,…,Ti,…,Tn)的断层,特征地震复发间隔的概率密度函数为(对数正态分布,NB模型,Nishenko and Buland, 1987):

在秧苗返青时逐步加水,扩大鳜鱼的活动范围。在9月底水稻即将成熟时再逐步排水,鳜鱼及饵料鱼(白鲢、鳙鱼、草鱼、鲫鱼等)会随着水位的逐渐降低而游回环沟。

(3)

式中,为复发间隔的中位数,σlnTi为固有标准差,σlnTi满足

(4)

对于有断层滑动速率资料的断层,可采用布朗过程时间(Brownian Passage -Time, BPT)模型(Matthews, 2002)计算特征地震的概率密度函数:

(5)

其中,T为大地震平均复发周期,α为大地震复发的不确定性,表示为

(6)

σ表示中强震和特征地震地震矩的比值,λ为断层滑动速率.

ln[y1130]=c1+fSource+fPath+fHW+τ·zi,

本文检验了长三角地区各城市经济基本面与其实际住房价格之间的关系,并估算了每个城市的房价偏离度。研究发现,实际收入、信贷扩张和人口城镇化等因素是长三角地区房价上升的主要驱动力。基于房价偏离的视角,对可能存在的“补涨”效应进行了事实检验,重新审视南京和杭州近一轮的房价上涨。分析发现,实际房价连续低于基本面价格的城市,未来房价具有上涨的空间,的确存在着“补涨”效应。这也给我们以启示,在市场机制下,房价本身就具有一定的“熨平”机制,房价偏离所带来的价格空间在未来的一定时机会释放出来,短期的房价调控手段并非治本之策。房价偏离与“补涨”效应的解释逻辑,对于深入理解部分城市房价上涨问题具有一定的参考意义。

(7)

2 鄂尔多斯块体周缘的断层源模型

鄂尔多斯块体周缘集中分布有多组雁列式或级联式活动断裂(图1).根据邓起东等(1999,2003)的研究,本文整理了块体周缘主要活动断层的断层结构和地震活动性参数,如表1所示.

表1 鄂尔多斯块体周缘主要断层及参数 Table 1 Main faults and their parameters surrounding Ordos Block

编号名称震级上限最小深度(km)最大深度(km)倾角(°)滑动角(°)滑动速率(mm·a-1)b值a值01巴彦乌拉山山前断裂7020601802.10.92.6602正谊关断裂7.502060-902.50.92.8103桌子山西缘断裂702065451.10.92.3704巴音浩特断裂7.5020601802.20.92.7505狼山山前断裂7.502065-902.20.92.7406色尔腾山山前断裂7.502055-902.30.92.7807乌拉山山前断裂7.502068-902.30.92.7608永兴盆地断裂7020751351.90.92.5909贺兰山东麓断裂802068-4550.93.1710海原断裂8.502090-45110.752.4711黄河断裂702060020.92.6412银川平罗断裂7.552068-4530.92.8113香山天景山断裂802065454.50.752.1014罗山断裂7.502070-4530.751.9215聊城兰考断裂702090-1351.90.862.3516中条山山前断裂7.502060-13530.782.1317绵山西侧断裂802060-13550.782.3618口泉断裂7.502070-1351.20.781.7119阳原盆地南缘断裂7.502060-1351.30.781.7620太白维山山前断裂702060-1351.80.781.8921磁县断裂7.502060-901.80.862.4122新开口断裂7020601801.80.781.8923怀安镇盆地北缘断裂7020601801.90.781.9224洗马林断裂702060-901.90.781.9225怀安镇盆地南缘702060-13520.781.9426阳原盆地北缘断裂7.5020601802.10.781.9727蔚广盆地南缘断裂7020601802.10.781.9628延矾盆地北缘断裂7.5020601802.10.781.9729怀涿盆地北缘断裂70206018020.781.9430宣化盆地南缘断裂7020601801.90.781.9231南口-孙河断裂702060-9020.862.4032黄庄-高丽营断裂7.5020601802.20.862.5033新保安-沙城断裂702060-901.90.781.9234通渭断裂702060-451.50.711.4035会宁-义岗断裂7.502060-4530.711.6836西秦岭北缘断裂天水段7.502065452.80.711.6437猫猫山断裂7.502070-4530.751.92

续表1

编号名称震级上限最小深度(km)最大深度(km)倾角(°)滑动角(°)滑动速率(mm·a-1)b值a值38天桥沟-黄羊川断裂802060-4540.752.0639临潭-宕昌断裂702060050.711.9340马仙山北缘断裂7.502070040.711.8941渭河断裂宝鸡段7.502060060.711.9942渭河断裂草滩段7.502060030.711.6843骊山山前断裂7.502060010.781.6544华山山前断裂8.50206003.20.782.3045临潼-长安断裂7.502060453.50.782.2046口镇关山断裂70206003.50.782.1847固关宝鸡断裂7.502060-4520.751.7648陇县断裂7.5020604520.781.9549岐山断裂7.5020604520.751.7650金陵河断裂702060450.50.751.1651秦岭北缘断裂802060030.782.1452渭河断裂咸阳段7.50206001.50.781.8353泾阳渭南断裂7.502060020.781.9554张家口断裂702060-1351.90.781.9255大同盆地南缘7.502075-13530.782.1756五台山北麓断裂7.50206018020.782.3557云中山山前断裂80207518060.782.4258系舟山北麓断裂7.5020701806.680.782.4659交城断裂7.502075-1354.50.782.3960太谷断裂7020601803.50.782.1861云罗山山前断裂8020601804.50.782.3262六盘山东麓断裂7.502060-4560.752.2463西秦岭北缘断裂东段7.502060020.781.9564锅麻滩断裂7.502065050.711.9065大青山山前断裂80206018040.93.0966色尔腾山山前东段70206018030.92.8167清水河断裂70206002.50.751.86

表中,断层的b值使用断层所处的《五代图》中地震带的b值.使用(1)、(2)式计算各断层的a值,结果也列在表1中.

随着我国“一带一路”总规划的进展,我国与非洲地区各个国家的经济合作将更加紧密,我国企业将会更多地投入到非洲的建设发展之中。几内亚国家现在所使用的地球椭球及投影方式,产生的测量成果不能满足我国《工程测量规范》的要求,因此必须要建立符合规范要求的坐标系统。几内亚BOFFA矿区选择1 498 m作为抵偿高程面,需要考虑测区的地理位置和东西宽度,该抵偿投影面在一定范围内能有效抑制测区内的边长变形。但是在东西宽度过大时,使用该方法计算得到的抵偿高程面不能满足测区边缘的边长变形要求,因此,可以尝试以测区中央经线为中央子午线,同时改变投影高程面的方法建立坐标系统。

对以上断层,本文根据收集到的历史地震和古地震资料,筛选出了各特征断层源,如图4所示.各特征断层源的地震活动性参数如表2所示.

国民党在意识形态层面的劣势固然有其先天的缺陷,但与其领袖蒋介石也脱不了关系。正如有论者指出的那样,虽然蒋介石的自我角色定位是豪杰、圣贤、革命领袖,但却缺乏足够的现代色彩。蒋介石是一个缺乏浪漫、幻想和激情的人,其人性格偏向保守、中庸,其政治家个性远胜于革命家气质。上述特质决定了蒋介石是一个缺乏意识形态魅力的领袖。

使用《五代图》的面源模型计算的块体周缘未来30年Ⅷ度地震动的超越概率分布图如图6所示.绘出图5与图6的比值(图5/图6),如图7所示.

考虑发用电双侧不确定性的电力系统鲁棒模糊经济调度//张晓辉,赵翠妹,梁军雪,李坤,钟嘉庆//(17):67

3 鄂尔多斯块体周缘未来30年地震危险性计算及与先前模型的比较

3.1 一般断层源与面源模型的比较

为了比较断层源与面源的差异,先将特征地震也考虑为泊松分布的,不考虑其时间相依性质,使用表1建立的一般断层源模型计算块体周缘未来30年的地震危险性.根据《中国地震烈度表》(2008)(中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,2008)的规定,当烈度超过Ⅷ度时,地表可能遭受中等以上破坏,建筑物可能会受到损坏,即Ⅷ度地震动对于中等以上破坏具有指示意义.因此本文计算块体周缘未来30年Ⅷ度地震动的超越概率分布图.

图4 鄂尔多斯块体周缘特征断层源分布示意图(各数字表示的特征断层源见表2) Fig.4 Characteristic fault sources surrounding Ordos Block (parameters of every source is in Table 2)

表2 特征断层源参数 Table 2 Parameters of characteristic fault sources

编号发震构造名称描述准周期性的时间参数/a离逝时间复发间隔标准差未来30年发生率资料来源03桌子山西缘断裂215922254635.1×10-2邢成起和王彦宾,199105狼山山前断裂10389842381.161×10-1冉勇康等,200306色尔腾山山前断裂400950225.554.56×10-4冉勇康等,200307乌拉山山前断裂16551346529.545.91×10-2冉勇康等,200309贺兰山东麓断裂系27619915080汪一鹏,1988;杜鹏等,200910海原断裂951007163.80杜义, 201213香山—天景山断裂带西-中段3061690525.660柴炽章等,200314罗山东麓断裂45415616006×10-4闵伟等,199316中条山山前断裂22502940~336015001.06×10-2王怡然等,2015司苏沛等,201417霍山山前断裂81221129004.32×10-3江娃利等,2004;徐岳仁,201218口泉断裂2520310041001.71×10-2谢新生等,200319阳原盆地南缘断裂6700750012001.10×10-2尹功明等,199720太白维山山前断裂39025001000邓起东等,199934通渭断裂29820001000邓起东等,199935会宁—义岗断裂6646672002.07×10-1邓起东等,199936西秦岭断裂带—天水段128125005002.7×10-4滕瑞增等,199440马仙山北缘断裂89313003002.70×10-2邓起东等,199944华山山前断裂43010003003.09×10-5邓起东等,199952渭河断裂44730008000师亚芹等,2007

续表2

编号发震构造名称描述准周期性的时间参数/a离逝时间复发间隔标准差未来30年发生率资料来源55恒山北簏断裂332025005008.43×10-2江娃利等,200356五台山北麓断裂150328008005.46×10-3丁锐等,200959交城断裂306025305007.5×10-2谢新生等,2008;郭慧等,201261罗云山山前断裂320--0孙昌斌等,201362六盘山东麓断裂带4000400020002.7×10-1向宏发等,199964西秦岭北缘断裂500040005005.1×10-2曹娟娟等,200365大青山山前断裂11662497.74766.6×10-5江娃利等,2001冉勇康等,2003

由于震源中包含断层源,选用的地震动预测方程(Ground Motion Prediction Equation, GMPE)的距离参数应为断层破裂距Rrup(场点到断层破裂面的最短距离).由于中国尚无适用于全国的基于Rrup的GMPE,本文选用NGA的GMPE中的Chiou和Youngs(2014).方程表达式为

从真空炉产出的真空精炼锡成分看,铅、铋均达到了标准要求(国标:Pb<0.003 5%、Bi<0.002 5%)。产出的真空精炼锡经过深度脱杂后,顺利产出了合格的四九锡。

ln[ysurface]=ln[y1130]+fsite+σ·zij,

(8)

根据概率密度函数的定义,特征地震在未来时间段Te-(TeT)内的发生率P

(9)

其中,fSource为震源影响项,包括震级影响和断裂破裂形式影响:

×ln[1+exp{cn(cM-M)}]

其中RRUP为场点到断层破裂面的最近距离(单位km).

3.综上所述,在时代的变更以及社会经济发展的推动作用下,我们已经步入了全新的媒体传播时代,新闻报道质量的高低直接影响着乡镇电视台的生存和发展。

(10)

其中,FRV为逆断层影响因子,滑动角(rake angle)在30°~150°之间时为1,其余情况为0;FNM为正断层影响因子,滑动角(rake angle)在-120°~-60°之间时为1,其余情况为0;ZTOR为断层破裂面顶点的埋深(单位km).带角标的c都为常数.

fPath为路径影响项,表达式为

fPath= c4ln[RRUP+c5cosh{c6max(M-cHM,0)}]

]

+[cγ1+cγ2/cosh{max(M-cγ3,0)}]

×RRUP,

(11)

+c1aFRV+c1bFNM+c7(ZTOR-4),

fHW为上下盘效应影响项,表达式为

fHW=c9cos2(δ)×tanh(RRUP/2)

(12)

其中,ZTOR为发震断层破裂面顶部埋深(单位km),RJB为Joyner-Boore距离(场点距发震断层同震破裂面在地面投影的最近距离,单位km),δ为断层破裂面倾角(单位°),W为断层破裂面宽度.

fSite为场地条件影响项,表达式为

(13)

使用一般断层源模型和上述GMPE模型计算鄂尔多斯块体周缘未来30年Ⅷ度地震动的超越概率,如图5所示.

使用NB模型或BPT模型计算各特征断层源未来30年的特征地震发生率,也列在表2中.

由图5—7可看出,使用本文方法建立的一般断层源模型的地震危险性与面源模型相比,地震危险性的极大值差别不大.在沿断层破裂面处,断层源的危险性多大于面源.但在海原断裂,断层源的危险性小于面源.这可能是由于面源统计地震活动性的地震目录中包含1920年的8.5级特大地震,使8.5级地震的发生率增大;而断层源模型考虑断层的长期平均危险性而导致.

3.2 特征断层源与一般断层源的比较

使用本文震源模型计算块体周缘未来30年Ⅷ度地震动的超越概率分布图,如图8所示.计算图8与图5的比值,如图9所示.由图8、9可见,时间相依的特征源模型展示出特征地震的危险性.临近特征地震复发周期的断层,地震危险性高.未来30年块体周缘地震危险性较高的断层有六盘山东麓断裂、会宁—义岗断裂、狼山山前断裂、恒山北簏断裂、交城断裂等.

3.3 本文震源与面源的比较

将本文建立的震源模型与《五代图》的面源模型比较,绘出图8与图6的比值,如图10所示.由图10可看出,采用本文的震源模型后,块体周缘多数断裂带未来30年的地震危险性有所增加,其中汾渭地震带地震危险性增加较明显;地震危险性减小的地区有海原断裂、香山—天景山断裂、大青山山前断裂等.由图8可看出,块体西南缘是未来30年地震危险性较高的地区.固原和定西是块体周缘未来30年地震危险性较高的城市.

4 结论和讨论

本文建立了面源和断层震源组合模型,并使用鄂尔多斯块体周缘断层活动资料,分析了块体周缘未来30年的大地震危险性.得出的主要结论有:

(1) 由断层滑动速率估算的断层地震活动性与基于地震目录统计的地震活动性总体差别不大,但断层源模型的地震危险性在断层破裂面处增大明显.

2.2 临床特征 MCT鳞癌变的患者无特异性表现,54%的患者表现为腹部不适感[8],如腹痛、腹胀等,也可有腹泻、便秘、尿频等症状,常与肿瘤生长迅速、在盆腔内移动时牵拉周围组织、压迫周围脏器、肿瘤转移等有关,同时由于肿瘤生长迅速、体积较大,囊肿组织内出血及坏死,易发生卵巢肿瘤破裂或蒂扭转等急腹症,进而出现发热、恶心、呕吐等表现。有文章报道肿物直径>99 mm,应高度怀疑为TMT[9]。本例患者突发腹痛,伴发热,考虑与发生肿瘤破裂并发症引起腹膜刺激有关,同时肿瘤破裂导致包块直径减小。MCT破裂较少见,一旦遇到应高度警惕癌变可能。

图5 使用一般断层源计算的鄂尔多斯块体周缘未来30年Ⅷ度地震动的超越概率分布 Fig.5 Probability of exceedance of Intensity Ⅷ by general fault source surrounding Ordos Block

图6 使用面源模型计算的块体周缘未来30年Ⅷ度地震动的超越概率分布 Fig.6 Probability of exceedance of Intensity Ⅷ by area source surrounding Ordos Block

图7 图5与图6的比值 Fig.7 Ratio of Fig.5 and Fig.6

图8 使用本文震源模型计算的块体周缘未来30年Ⅷ度地震动的超越概率分布 Fig.8 Probability of exceedance of Intensity Ⅷ by our source model surrounding Ordos Block

图9 图8与图5的比值 Fig.9 Ratio of Fig.8 and Fig.5

图10 图8与图6的比值 Fig.10 Ratio of Fig.8 and Fig.6

(2) 使用特征震源模型,临近大地震复发周期的断层地震危险性高.

(3) 鄂尔多斯块体周缘未来30a地震危险性较高的地区主要在块体西南缘,固原和定西是未来30年块体周缘地震危险性较高的城市.

对于项目驱动式教学的具体内容,可能有些任务比较单调,偏重于学科的前后连贯性和技能的可操作性,因此,任务驱动式课程应具备能够引起学生足够的兴趣和求知欲望的内容(环节),注意要求学生运用新学习的知识、技能解决新问题,从而提高教学效果[10]。

本文的地震危险性分析结果同《五代图》的结果进行了比较,在此需要讨论以下几点:

(1) 《五代图》给出长期地震危险性,适合于一般建设工程抗震设防.

(2) 时间相依的地震危险性模型给出的是中期地震危险性,对于应急备灾工作具有参考价值(李昌珑,2016).

(3) 时间相依模型存在资料不完整、断裂参数误差带来的不确定性问题,在今后需要更多地研究不确定性对时间相依的地震危险性分析的影响.

(4) 本文将特征断层源的大地震活动性假设为准周期复发行为.本文在收集块体周缘历史地震的工作中发现,块体周缘多数断层都仅有一次历史大地震记载,而古地震记录的发震时间和震级的不确定性都较大.因此,各特征断层源是否符合大地震准周期复发的性质,还需要更多研究.

(5) 在震源模型的建立方法上面,本文建立了面源、一般断层源和特征断层源的组合模型.这一模型不同于五代图中的震源模型,其适用性还需要更多的研究加以分析.

(6) 本文得出的时间相依的地震危险性的结论基于各断层的大地震复发周期,假设各断层间的活动规律互不相关.实际中的大地震相互作用机制可能更为复杂,还需要更多工作加以研究.巴颜喀拉块体的东北向运动趋势是否会增加鄂尔多斯块体周缘的地震危险性,也是今后需要继续研究的问题.

The links are part of a plan to create an integrated[整合的,互相协调的]region that officials have dubbed[把……称作] the “Greater Bay Area.” The bridge will put Hong Kong, Macao and Zhuhai within an hour of each other.

References

Anderson J G, Luco J E. 1983. Consequences of slip rate constraints on earthquake occurrence relations. Bulletin of the Seismological Society of America, 73(2): 471-496.

Cao J J, Liu B C, Wen X Z. 2003. Determination of the average recurrence intervals of characteristic earthquakes and estimate of earthquake risk on northern Xiqinling faults. Journal of Seismological Research (in Chinese), 26(4): 372-381.

Chai C Z, Jiao D C, Liao Y H, et al. 2003. Discovery of surface rupture zone produced by Guanguanling earthquake at the juncture of Ningxia, Inner Mongolia and Gansu Province. Seismology and Geology (in Chinese), 25(1): 167-171.

Chiou B S J, Youngs R R. 2014. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3): 1117-1153.

Committee on Earth and Environmental Science Subcommittee on Natural Disaster Reduction (CEESS). 1992. Reducing the Impacts of Natural Hazards.

Cornell C A. 1968. Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5): 1583-1606.

Danciu L, Sesetyan K, Demircioglu M, et al. 2017. The 2014 earthquake model of the middle east: seismogenic sources. Bull. Earthquake Eng., doi:10.1007/s10518-017-0096-8.

Deng Q D, Cheng S P, Min W, et al. 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block. Journal of Geomechanics (in Chinese), 5(3): 13-21.

Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Active tectonics and earthquake activities in China. Earth Science Frontiers (in Chinese), 10(S1): 66-73.

Ding R, Ren J J, Zhang S M. 2009. Late Quaternary activity and paleoearthquakes along the Nanyukou Segment of the Northern Piedmont Fault of the Wutai Mountain. Earthquake Research in China (in Chinese), 25(1): 41-53.

Du P, Chai C Z, Liao Y H, et al. 2009. Study on Holocene activity of the south segment of the eastern piedmont fault of Helan Mountains between Taomengou and Yushugou. Seismology and Geology (in Chinese), 31(2): 256-264.

Du Y. 2012. Haiyuan Fault segmentation earthquake potential analysis. Plateau Earthquake Research (in Chinese), 24(4): 8-10,14.

Earthquake Investigation Research Promotion Committee (EIRPC), Seismological Survey Committee (SSC). 2016. National Seismic Ground Motion Prediction Map Version 2016 (in Japanese).

Gao L X, Dai Y, Jia N. 2012. Study on seismic activity characteristics in ordos block and seismic risk analysis of northern edge. Journal of Institute of Disaster Prevention (in Chinese), 14(4): 70-79.

General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, China National Standardization Management Committee. 2008. GB/T 17742-2008 The Chinese seismic intensity scale (in Chinese). Beijing: China Standard Press.

General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, China National Standardization Management Committee. 2015. GB 18306-2015 Seismic ground motion parameters zonation map of China (in Chinese). Beijing: China Standard Press.

Giardini D, Woessner J, Danciu L, et al. 2013. Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource. http:∥portal.share-eu.org:8080/jetspeed/portal/.

Guo H, Jiang W L, Xie X S. 2012. Analysis of Holocene faulting phenomena revealed in the three trenches along the northern and central Jiaocheng fault, Shanxi. Seismology and Geology (in Chinese), 34(1): 76-92.

Gutenberg B, Richter C F. 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4): 185-188.

Jiang W L, Xiao Z M, Wang H Z, et al. 2001. Segmentation character of seimic surface ruptures of the piedmont active fault of MT. Daqingshan, Inner Mongolia. Seismology and Geology (in Chinese), 23(1): 24-34.

Jiang W L, Xie X S, Wang H Z, et al. 2003. Holocene palaeoseismic activities along the northern piedmont fault of Hengshan Mountain, Datong Basin, Shanxi Province. Earthquake Research in China (in Chinese), 19(1): 8-19.

Jiang W L, Deng Q D, Xu X W, et al. 2004. Surface rupture zone of the 1303 Hongtong M=8 Earthquake, Shanxi Province. Acta Seismologica Sinica (in Chinese), 26(4): 355-362.

Li C L, Xu W J, Wu J, et al. 2015. Time-dependent probabilistic seismic hazard analysis methods and its applications based on characteristic earthquake models. Acta Seismologica Sinica (in Chinese), 37(6): 1024-1036.

Li C L. 2016. Study and application of time-dependent seismic hazard zonation [Ph.D.thesis] (in Chinese). Beijing: Institute of Geophysics, China Earthquake Administration.

Matthews M V. 2002. A Brownian model for recurrent earthquakes. Bulletin of the Seismological Society of America, 92(6): 2233-2250.

Min W, Chai C Z, Wang P, et al. 1993. The study on the paleoearthquakes on the eastern piedmont fault of the Luoshan Mountain in Holocene. Earthquake Research in Plateau (in Chinese), 5(4): 97-102.

National Land Agency of Japan (NLAJ). 1997. Disaster Countermeasures Basic Act.

Nishenko S P, Buland R. 1987. A generic recurrence interval distribution for earthquake forecasting. Bulletin of the Seismological Society of America, 77(4): 1382-1399.

Pan H, Gao M T, Xie F R. 2013. The earthquake activity model and seismicity parameters in the new seismic hazard map of China. Technology for Earthquake Disaster Prevention (in Chinese), 8(1): 11-23.

Petersen M D, Cao T Q, Campbell K W, et al. 2007. Time-independent and time-dependent seismic hazard assessment for the State of California: Uniform California earthquake rupture forecast model 1.0. Seismological Research Letters, 78(1): 99-109.

Ran Y K, Zhang P Z, Chen L C. 2003. Research on the completeness of paleoseismic activity history since late Quaternary along the Daqingshan Piedmont Fault in Hetao Depression Zone, North China. Earth Science Frontiers (in Chinese), 10(S1): 207-216.

Shao Z G, Zhang L P. 2013. Study of strong earthquake recent trends on the northern segment of north-south seismic belt. Earthquake Research in China (in Chinese), 29(1): 26-36.

Shi Y Q, Li J, Feng X J, et al. 2007. The study of Paleoearthquake on the Weihe Fault Zone. Seismology and Geology (in Chinese), 29(3): 607-616.

Si S P, Li Y L, Lü S H, et al. 2014. Holocene slip rate and paleoearthquake records of the Salt Lake segment of the Northern Zhongtiaoshan Fault, Shanxi Province. Science China Earth Sciences, 57(9): 2079-2088.

Sun C B, Xie X S, Xu J H. 2013. Late Quaternary faulted landforms characteristics on the Tumen-Jiazhu village segment of the Luoyunshan piedmont fault. Earthquake Research in China (in Chinese), 29(3): 347-357.

Teng R Z, Jin Y Q, Li X H, et al. 1994. Recent activity characteristics of the fault zone at northern edge of Western Qinling MT. Northwestern Seismological Journal (in Chinese), 16(2): 85-90.

Wang Y P. 1988. Active Fault Systems around Ordos Block (in Chinese). Beijing: Seismology Press.

Wang Y R, Li Y L, Yan D D, et al. 2015. Holocene Paleoseismology of the middle and south segments of the North Zhongtiaoshan Fault Zone, Shanxi. Seismology and Geology (in Chinese), 37(1): 1-12.

Xiang H F, Ikeda Y, Zhang W X, et al. 1999. Study on Paleoearthquakes of the Eastern Liupanshan piedmont fault zone. Earthquake Research in China (in Chinese), 15(1): 74-81, 91.

Xie X S, Jiang W L, Sun C B, et al. 2008. Comparison study on holocene paleoseismic activities among multi-trenches along the Jiaocheng Fault Zone, Shanxi. Seismology and Geology (in Chinese), 30(2): 412-430.

Xie X S, Jiang W L, Wang R, et al. 2003. Holocene Paleo-seismic activities on the Kouquan Fault Zone, Datong Basin, Shanxi Province. Seismology and Geology (in Chinese), 25(3): 359-374.

Xing C Q, Wang Y B. 1991. Zhuozishan fault zone and its Neoactive characteristics. Northwestern Seismological Journal (in Chinese), 13(3): 86-88.

Xu Y R. 2012. A study on the late quaternary faulting of the Huoshan piedmont fault zone in the central Shanxi faulted basin belt [Ph. D. thesis] (in Chinese). Beijing: Institute of Geology, China Earthquake Administration.

Yang X P, Ran Y K, Hu B, et al. 2002. Paleoseismic activity on Wujiahe segment of serteng piedmont fault, Inner Mongolia. Acta Seismologica Sinica (in Chinese), 25(1): 62-71.

Yang Y Y. 2013. Late Quaternary activity research of the middle section of Huashan Front Fault [Master′s thesis] (in Chinese). Bejing: Institute of Earthquake Science, China Earthquake Administration.

Yin G M, Xu X W, Sun Y J, et al. 1997. Study on the Paleoearthquake Chronology of the Northern Piedmont Fault of the Liulengshan Range of Yangyuan, Hebei Province, China. Earthquake Research in China (in Chinese), 13(1): 18-26.

Zhou B G, Chen G X, Gao Z W, et al. 2013. The technical highlights in identifying the potential seismic sources for the update of national seismic zoning map of China. Technology for Earthquake Disaster Prevention (in Chinese), 8(2): 113-124.

附中文参考文献

曹娟娟, 刘百篪, 闻学泽. 2003. 西秦岭北缘断裂带特征地震平均复发间隔的确定和地震危险性评价. 地震研究, 26(4): 372-381.

柴炽章, 焦德成, 廖玉华等. 2003. 宁、蒙、甘交界罐罐岭发现地震地表破裂带. 地震地质, 25(1): 167-171.

邓起东, 程绍平, 闵伟等. 1999. 鄂尔多斯块体新生代构造活动和动力学的讨论. 地质力学学报, 5(3): 13-21.

邓起东, 张培震, 冉勇康等. 2003. 中国活动构造与地震活动. 地学前缘, 10(S1): 66-73.

丁锐, 任俊杰, 张世民. 2009. 五台山北麓断裂南峪口段晚第四纪活动与古地震. 中国地震, 25(1): 41-53.

杜鹏, 柴炽章, 廖玉华等. 2009. 贺兰山东麓断裂南段套门沟—榆树沟段全新世活动与古地震. 地震地质, 31(2): 256-264.

杜义. 2012. 海原断裂带分段地震潜势分析. 高原地震, 24(4): 8-10, 14.

高立新, 戴勇, 贾宁. 2012. 鄂尔多斯块体周缘地震活动特征分析. 防灾科技学院学报, 14(4): 70-79.

中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2008. GB/T 17742-2008 中国地震烈度表. 北京: 中国标准出版社.

中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2015. GB 18306-2015 中国地震动参数区划图. 北京: 中国标准出版社.

郭慧, 江娃利, 谢新生. 2012. 山西交城断裂北端及中段3个大型探槽全新世断错现象分析. 地震地质, 34(1): 76-92.

江娃利, 肖振敏, 王焕贞等. 2001. 内蒙大青山山前活动断裂带的地震破裂分段特征. 地震地质, 23(1): 24-34.

江娃利, 谢新生, 王焕贞等. 2003. 山西大同盆地恒山北缘断裂全新世古地震活动. 中国地震, 19(1): 8-19.

江娃利, 邓起东, 徐锡伟等. 2004. 1303年山西洪洞8级地震地表破裂带. 地震学报, 26(4): 355-362.

李昌珑, 徐伟进, 吴健等. 2015. 基于特征地震模型含时间的概率地震危险性分析方法及其应用研究. 地震学报, 37(6): 1024-1036.

李昌珑. 2016. 时间相依的地震危险性区划研究及应用[博士论文]. 北京: 中国地震局地球物理研究所.

闵伟, 柴炽章, 王萍等. 1993. 罗山东麓断裂全新世古地震研究. 高原地震, 5(4): 97-102.

潘华, 高孟潭, 谢富仁. 2013. 新版地震区划图地震活动性模型与参数确定. 震灾防御技术, 8(1): 11-23.

冉勇康, 张培震, 陈立春. 2003. 河套断陷带大青山山前断裂晚第四纪古地震完整性研究. 地学前缘, 10(S1): 207-216.

邵志刚, 张浪平. 2013. 南北地震带北段近期强震趋势研究. 中国地震, 29(1): 26-36.

师亚芹, 李晋, 冯希杰等. 2007. 渭河断裂带古地震研究. 地震地质, 29(3): 607-616.

司苏沛, 李有利, 吕胜华等. 2014. 山西中条山北麓断裂盐池段全新世古地震事件和滑动速率研究. 中国科学: 地球科学, 44(9): 1958-1967.

孙昌斌, 谢新生, 许建红. 2013. 罗云山山前断裂中段土门—贾朱村晚第四纪断错地貌特征. 中国地震, 29(3): 347-357.

滕瑞增, 金瑶泉, 李西候等. 1994. 西秦岭北缘断裂带新活动特征. 西北地震学报, 16(2): 85-90.

汪一鹏. 1988. 鄂尔多斯周缘活动断裂系. 北京: 地震出版社.

王怡然, 李有利, 闫冬冬等. 2015. 中条山北麓断裂中南段全新世地震事件的初步研究. 地震地质, 37(1): 1-12.

向宏发, 池田安隆, 张晚霞等. 1999. 六盘山东麓断裂的古地震研究. 中国地震, 15(1): 74-81, 91.

谢新生, 江娃利, 孙昌斌等. 2008. 山西交城断裂带多个大探槽全新世古地震活动对比研究. 地震地质, 30(2): 412-430.

谢新生, 江娃利, 王瑞等. 2003. 山西大同盆地口泉断裂全新世古地震活动. 地震地质, 25(3): 359-374.

邢成起, 王彦宾. 1991. 桌子山断裂带及其新活动特征. 西北地震学报, 13(3): 86-88.

徐岳仁. 2012. 山西霍山山前断裂带晚第四纪活动特征研究[博士论文]. 北京: 中国地震局地质研究所.

杨晓平, 冉勇康, 胡博等. 2002. 内蒙古色尔腾山山前断裂带乌加河段古地震活动. 地震学报, 25(1): 62-71.

杨源源. 2013. 华山山前断裂中段晚第四纪活动研究[硕士论文]. 北京: 中国地震局地震预测研究所.

尹功明,徐锡伟,孙瑛杰等. 1997. 河北省阳原六棱山北麓断裂古地震年代学的初步研究. 中国地震,13(1): 18-26.

周本刚, 陈国星, 高战武等. 2013. 新地震区划图潜在震源区划分的主要技术特色. 震灾防御技术, 8(2): 113-124.

李昌珑,吴健,徐伟进,高孟潭
《地球物理学报》 2018年第06期
《地球物理学报》2018年第06期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号