更全的杂志信息网

新疆昭苏卡拉盖雷铜(金)矿床酸性火山岩锆石U-Pb年代学、地球化学及其地质意义

更新时间:2016-07-05

卡拉盖雷铜(金)矿床位于新疆中天山北缘西段,是受一套连续火山岩控制的火山岩型热液矿床(郭鹏志等,2012a;李小飞等,2013)。矿区地层主要由一套连续火山岩构成,矿体主要赋存于隐爆角砾岩、硅化蚀变岩、片理化蚀变凝灰岩中(薛兰花等,2016),前人对矿区出露火山岩的研究显示为大陆弧环境(郭鹏志等,2012b;葛文胜等,2013;沈利霞等,2014)。本文通过对矿区主要火山岩锆石U-Pb年代学及岩石地球化学分析,并结合区域地质演化背景,以期进一步限定成矿背景。

1 地质背景

研究区位于新疆中天山北缘那拉提构造带西段(图1)。在早古生代中天山与伊犁板块之间存在帖尔斯克依古洋,并发生南北双向俯冲。在奥陶纪,帖尔斯克依洋消亡并发生中天山与伊犁板块的碰撞造山,在中天山北缘及邻区发生大规模逆冲推覆和剪切走滑;于此同时中天山与塔里木板块之间逐渐打开,形成南天山洋并向北俯冲,在中天山南缘形成活动陆缘(高俊等,2009;薛春纪等,2014a)。

本数据采集系统中设计的总线长32 m,每隔1 m接入一个从站单元,测试时在A1从站的第3通道接入3 V的电压,其余通道和从站悬空,发送查询指令后上位机收到的数据如图9所示。

矿区所在区域主要出露中元古代那拉提群、上志留统巴音布鲁克组、下石炭统大哈拉军山组、下石炭统阿克沙克组。大哈拉军山组主要由一套杂色火山碎屑岩组成。区内构造以断裂为主,具隐伏状的基底断裂网和地壳浅部的断裂系统特征。区内侵入岩主要为吕梁期、加里东期和华力西期三个旋回(王海涛等,2007;葛文胜等,2013)。

大部分从广角反射/折射数据中得出的模型都会假设各向同性,即使有很多迹象表明这一假设无效(例,Malinowski et al,2008)。只有少数利用广角反射/折射数据进行各向异性估计的例子发表(如见,Bleibinhaus and Gebrande,2006;oda,2006)。其原因主要与数据采集相关:缺少多分量记录和三维宽方位测量。比较深反射数据(对垂直波传播敏感)和广角反射/折射数据(对水平波传播敏感),就能知道为什么各向异性如此重要(Jones et al,1996)。

综上可知,卡拉盖雷矿区火山岩显示出活动大陆边缘的性质,岩浆经历了结晶分离作用,原始岩浆可能为受俯冲板片物质参与的部分熔融的上地幔,总体受控于碰撞造山后期伸展环境。

从图4可以看出,不同耕作方式下,深松耕土壤的可溶性氮含量最高,且显著大于常规耕作和免耕方式(P<0.05),深松耕土壤硝态氮含量最高,显著高于常规耕作和免耕方式(P<0.05)。免耕方式土壤铵态氮含量最高,显著大于深松耕和常规耕作(P<0.05)。

图1 新疆昭苏卡拉盖雷铜(金)矿床地质简图(据郭鹏志等,2012a修改) Fig.1 Simplified geological map of the Kalagailei deposit in Zhaosu of Xinjiang (modified from Guo et al., 2012a) 1-第四系;2-砾岩;3-火山角砾岩;4-沉凝灰岩;5-英安岩;6-安山岩;7-凝灰岩;8-玄武凝灰岩;9-玄武岩;10-绿泥石化片岩;11-闪长岩; 12-花岗闪长岩;13-流纹斑岩;14-硅质脉;15-断层;16-韧性剪切带;17-铜矿体 1-Quaternary; 2-conglomerate; 3-volcanic breccia; 4-tuffite; 5-dacite; 6-andesite; 7-tuff; 8-basaltic tuff; 9-basalt; 10-chlorite schist; 11-diorite; 12-granodiorite; 13-rhyolite porphyry; 14-siliceous vein; 15-fault; 16-ductile shear belt; 17-fault; 17-Cu ore body

2 测试手段和方法

一般情况下,岩浆锆石的Th、U含量较高,Th/U比值大于0.5,而变质成因锆石的Th、U含量低,且Th/U比值小于<0.1(Hoskin et al.,2000;郑伟等,2013;Zheng et al.,2015,2017a,2017b,2017c)。典型的岩浆成因锆石Th/U比值一般为0.1~1.0(Belousova et al.,2002;杨富成等,2017;郑伟等,2013;Zheng et al.,2017c)。流纹岩锆石呈浅黄色-无色透明短柱状,长轴长约50~70μm,CL图像显示具有一定的环带结构(图3a),Th/U值为0.25~0.65,平均0.46,指示其属于岩浆成因锆石,本次选取了18个点进行测试(表2),最后所得加权平均年龄为443±2Ma(n=16,MSWD=0.65)(图4b),基本代表了岩体的形成年龄;安山岩锆石无色透明、短柱状,长轴长主要为60~110μm,CL图像显示具有明显的环带结构(图3b),Th/U比值为0.36~0.73,平均0.49,显现为岩浆成因锆石,所测21个锆石点数据得到谐和年龄437.6±4.2Ma(图4c);霏细岩样品锆石呈无色透明、短柱状,长轴长80~120μm,CL图像显示具有较为密集,为典型的岩浆成因锆石,选取26个点进行测试,结果显示谐和年龄为451.4±2Ma,与年龄分部直方图峰值相近(图4e、f),可代表岩浆成岩年龄。

本次主、微量元素测试工作完成于中国核工业北京地质研究院分析测试研究中心,主量元素分析使用AxiosmAX X射线荧光光谱仪(XRF法),测定方法和依据为GB/T14506.14/28,微量元素分析使用仪器NexION300D等离子体质谱仪,分析方法和依据为GB/T14506.30。

卡拉盖雷铜(金)矿区出露的主要地层为下石炭统大哈拉军山组及部分第四系残坡积物(图1)。大哈拉军山组主要为一套火山岩地层,出露岩性以玄武岩、安山岩、英安岩、玄武质凝灰岩、安山质凝灰岩和火山角砾岩等为主,整体走向近EW向。矿区断裂整体与地层走向相近,在矿区中部发育近EW向片理化带,属于区域上韧性剪切带一部分。矿区侵入岩主要发育有华力西中期闪长岩及花岗闪长岩等。

岩石主量元素含量见表1。流纹岩SiO2含量74.93%~76.65%,Al2O3含量11.77%~12.61%,Na2O含量2.66%~3.67%,K2O含量4.27%~5.01%;安山岩SiO2含量57.66%~59.94%,Al2O3含量15.24%~16.66%,Na2O含量3.47%~3.91%,K2O含量2.26%~2.71%;霏细岩SiO2含量62.11%~64.46%,Al2O3含量14.62%~16.01%,Na2O含量0.14%~0.20%,K2O含量8.59%~9.27%。

3 测试结果

3.1 元素地球化学

锆石U-Pb同位素定年在武汉上谱分析科技有限公司利用LA-ICP-MS分析完成,详细的仪器参数与分析流程见Zong et al.(2017),本次分析的激光束斑和频率分别为32μm和5Hz,U-Pb测年采用锆石标准91500,数据分析采用软件ICPMSDATACal(Liu et al.,2008;Liu et al.,2010)完成,锆石样品的U-Pb年龄谐和图绘制和年龄加权平均计算采用软件Isoplot/Ex ver3(Ludwig,2003)完成。

岩石样品稀土元素测试结果见表1。 流纹岩ΣREE为250.25×10-6~301.13×10-6,LREE/HREE值为2.92~3.43,(La/Yb)N值为1.97~2.36,δEu值为0.2,总体呈现明显的Eu亏损、轻稀土轻微富集的特征(图2a),微量元素相对富集Th、U,亏损Ba、Sr等元素(图2b);安山岩ΣREE为225.63×10-6~289.31×10-6,LREE/HREE值为9.14~10.29,(La/Yb)N值为8.62~10.19,δEu值为0.61~0.66,呈现出轻稀土相对富集、Eu较弱负异常的特征(图2c),微量元素呈现Ba、Th、U、Nd相对富集,Ta、Nb、Sr相对亏损(图2d);霏细岩ΣREE为113.03×10-6~329.99×10-6,LREE/HRE值为6.93~14.74,(La/Yb)N为5.66~16.43,δEu为0.53~0.86,呈现轻稀土元素相对富集、Eu轻微负异常的特征(图2e),微量元素呈现Ba、Th、U、Nd相对富集,Ta、Nb、Sr相对亏损(图2f)。

表1 矿区火山岩元素地球化学测试结果

Table 1 Major elements content of volcanic rocks from the Kalagailei deposit

岩性流纹岩安山岩霏细岩编号klb2klb3klb4klb10klb11klb12klb24klb25klb26SiO276.6576.5074.9359.9457.6658.0864.4663.2562.11Al2O312.0811.7712.6115.8415.2416.6615.0116.0114.62TFe2O31.691.901.826.265.646.864.995.507.80FeO1.431.430.903.803.343.943.734.135.98MgO0.130.220.134.013.474.350.630.760.67CaO0.460.850.932.104.662.001.170.830.29Na2O2.662.773.673.913.803.470.140.140.20K2O5.014.774.272.282.262.718.868.599.27MnO0.020.030.030.030.060.040.050.050.05TiO20.070.070.070.760.720.780.250.260.37P2O50.020.020.010.170.150.160.110.110.13烧失量1.191.071.474.646.294.864.274.464.44Rb395375332104105159365400376Ba73.168.769.6586566705186317962112Th54.948.856.620.219.721.922.323.321.1U6.86.087.64.164.274.4376.055.8Ta3.433.253.751.211.151.261.181.081.13Nb46.142.638.714.313.614.915.817.216.6Sr16.617.419.924139121884.977.153Nd48.249.257.241.439.149.347.656.721.5Zr207198216225211233229246207Hf9.8710.511.76.226.16.736.657.126.22La31.632.736.548.344.860.167.169.122.8Ce81.895.611010610113113915444.1Pr10.811.612.910.61012.713.115.35.42Nd48.249.257.241.439.149.347.656.721.5Sm13.914.316.57.467.078.87.719.873.91Eu0.0940.0930.1171.41.41.791.51.541.05Gd1413.415.56.56.467.876.358.073.55Tb3.022.983.541.051.081.230.9491.180.639Dy18.417.420.45.565.636.314.345.413.43Ho3.593.383.851.081.11.20.8051.050.712

续表1

Continued Table 1

岩性流纹岩安山岩霏细岩编号klb2klb3klb4klb10klb11klb12klb24klb25klb26Er109.4110.13.193.173.572.453.082.17Tm1.811.71.840.5670.5740.6380.440.5410.416Yb11.510.811.13.653.734.232.933.622.89Lu1.541.521.580.5160.5150.5710.4580.5330.446ΣREE250.25264.08301.13237.27225.63289.31294.73329.99113.03(La/Yb)N1.972.172.369.498.6210.1916.4313.695.66δEu0.020.020.020.610.630.660.660.530.86LREE/HREE2.923.363.439.739.1410.2914.7413.056.93

注:测试单位:中国核工业北京地质研究院分析测试研究中心;测试时间:2016年7月。TFe2O3为全铁含量(%);主量元素单位为%;微量元素单位为10-6

图2 岩石稀土、微量元素球粒陨石标准化配分图(标准数据据Sun et al., 1989) Fig.2 Chondrite-normalized REE patterns and trace elements of volcanic rocks from the Kalagailei deposit (normal- ized data from Sun et al., 1989) a、c、e分别为流纹岩、安山岩、霏细岩稀土元素球粒陨石标准化配分图;b、d、f分别为流纹岩、安山岩、霏细岩微量元素球粒陨石标准化蛛网图 a, b, c- chondrite-normalized REE patterns of rhyolite, andesite and feliste;d, e, f- trace elements chondrite-normalized patterns of rhyolite, andesite and feliste

3.2 锆石U-Pb年代学

本次所测试的流纹岩、安山岩和霏细岩样品均采于矿区矿体所在位置的南北侧,样品新鲜,未见明显蚀变。

4 讨论

4.1 成岩时代

近年来,在西天山那拉提构造带及东天山均发现有与构造-次火山岩浆活动相关的金(铜)矿床(杜亚龙等,2016;毛启贵等,2017;朱余银等,2017)。前人对卡拉盖雷矿区的基性到酸性火山岩研究显示为一套连续亚碱性火山岩系列,地球化学特征指示为大陆弧环境,并呈现出伸展背景的特征(郭鹏志等,2012;李小飞等,2013;葛文胜等,2013;沈丽霞等,2014)。本次测试火山岩样品除霏细岩呈碱性外,其他均呈亚碱性(图5a),在Sr/Y-Y图解上(图5b),岩浆岩样品点全部落入正常岛弧区域,显示出岛弧火山岩的性质,火山岩源区可能与俯冲板片相关。La/Sm-La图解(图5c)显示安山岩与霏细岩样品点呈线性分布,说明它们的源岩为部分熔融的原始岩浆。在Rb-Sr图上可以看出(图5d),随着岩浆演化,斜长石、钾长石发生结晶分离,岩浆中的Sr含量大幅度降低,可能暗示了火山岩的岩浆经历了由基性岩浆的演化过程。本区火山岩样品K2O含量为2.26%~9.27%,相对一般岛弧火山岩低钾的特征(平均1.60%)偏高,指示相对更具活动大陆边缘的性质;同时具有较高的Al2O3含量(11.77%~16.66%),A/CNK值为1.4~2.0,显示出过铝质的特征,可能与洋片的俯冲消减作用相关或者受到了地壳的混染。稀土元素显示轻稀土元素相对富集,表现有不同程度的δEu亏损(0.02~0.86),可能与原始岩浆的结晶分离作用有关。微量元素结果显示,安山岩样品明显亏损Ba、Zr,可能与钾长石的分离结晶有关,三种火山岩均亏损Nb、Ta,可能受板片俯冲作用的影响(Zheng et al.,2015)。SiO2与其他元素图解显示(图6),火山岩样品具有大洋岛弧-大陆岛弧的性质。综合分析,卡拉盖雷矿区酸性火山岩主要表现出钙碱性、偏大陆边缘弧的性质,岩浆经历了结晶分异作用,可能受到部分地壳物质混染。

图3 岩石薄片镜下照片及相应的锆石阴极发光照片 Fig. 3 Micrographs of volcanic rocks and CL images of the selected zircon from the Kalagailei deposit a-流纹岩;b-安山岩;c-霏细岩 a-rhyolite;b-andesite;c-feliste

表2 锆石U-Pb测试结果

Table 2 Zircon U-Pb dating results of volcanic rocks

样品号232Th/238U同位素比值年龄206Pb/238U1σ207Pb/235U1σ206Pb/238U1σ207Pb/235U1σ流纹岩KLB.6.010.470.07070.00080.54960.007044154456

续表2

Continued Table 2

样品号232Th/238U同位素比值年龄206Pb/238U1σ207Pb/235U1σ206Pb/238U1σ207Pb/235U1σKLB.6.020.370.07190.00060.56090.007444844526KLB.6.030.510.07140.00070.55860.007644544516KLB.6.040.490.07010.00060.54690.007543744436KLB.6.050.470.07080.00060.55070.007244144456KLB.6.060.510.07230.00100.55780.0140450645011KLB.6.070.470.07060.00060.54930.007344044456KLB.6.080.250.07170.00060.55150.007544644466KLB.6.090.650.06680.00060.52000.007641744256KLB.6.100.430.07070.00060.55190.007144044466KLB.6.110.530.07130.00070.56320.008044454546KLB.6.130.430.07100.00060.54580.007144244426KLB.6.140.450.07160.00070.55320.008344644477KLB.6.150.410.07130.00070.54880.007144444446KLB.6.160.470.07110.00060.55710.009144344507KLB.6.170.400.07130.00060.55070.006344444455KLB.6.180.530.07060.00060.54610.007744044426安山岩KLB10-170.460.06640.00180.51460.03994141142227KLB10-080.470.06950.00120.58030.0308433746520KLB10-060.360.06980.00160.52280.03934351042726KLB10-100.490.06980.00150.52310.0360435942724KLB10-220.400.07010.00150.55190.0354437944623KLB10-120.460.07020.00170.56230.05804371045338KLB10-180.550.07030.00150.53680.0380438943625KLB10-040.460.07030.00140.55310.0313438944720KLB10-020.570.07040.00150.56060.0350438945223KLB10-110.530.07040.00130.54420.0411438844127KLB10-010.390.07040.00140.56770.0379439845725KLB10-200.400.07050.00160.55810.04614391045030KLB10-030.450.07050.00140.55040.0353439844523KLB10-050.420.07050.00160.57430.03454391046122KLB10-230.470.07060.00170.52180.04124401042628KLB10-070.500.07570.00140.59140.0295470847219KLB10-140.720.07730.00110.59180.0266480647217KLB10-160.460.07820.00200.62420.04514851249228KLB10-210.540.07900.00250.62280.06124901549238KLB10-190.470.08220.00200.66760.05235091251932

续表2

Continued Table 2

样品号232Th/238U同位素比值年龄206Pb/238U1σ207Pb/235U1σ206Pb/238U1σ207Pb/235U1σKLB10-090.730.28710.00584.01120.2150162729163644霏细岩KLB24-040.280.07150.00140.54970.0402445944526KLB24-110.290.07160.00150.54490.0386446944225KLB24-060.300.07170.00150.52540.0350446942923KLB24-010.290.07170.00200.55850.04734461245131KLB24-080.320.07170.00210.52600.05064471342934KLB24-090.300.07180.00160.57940.0421447946427KLB24-220.290.07180.00150.56420.0375447945424KLB24-120.280.07190.00200.54770.04874471244332KLB24-050.310.07210.00150.56140.0502449945233KLB24-020.290.07210.00160.55630.04064491044926KLB24-190.300.07220.00150.55090.0424449944628KLB24-070.300.07220.00190.53990.04944491243833KLB24-150.290.07220.00160.55560.0390449944925KLB24-100.280.07220.00160.55610.03894501044925KLB24-200.280.07240.00130.56140.0361450845223KLB24-160.290.07280.00150.57320.0451453946029KLB24-270.320.07280.00160.57560.04144531046227KLB24-140.310.07300.00160.56830.0394454945725KLB24-170.380.07310.00170.58490.04354551046828KLB24-250.280.07400.00150.59140.0401460947226KLB24-260.290.07410.00150.59630.0383461947524KLB24-130.370.07430.00150.58500.0402462946826KLB24-230.280.07430.00160.57840.0387462946325KLB24-210.320.07860.00170.62560.04564881049329KLB24-180.280.08020.00170.62460.04334971049327KLB24-240.390.08020.00200.65440.04714971251129

注:测试单位:武汉上谱分析科技有限公司;测试时间:2016年7月。

图4 锆石U-Pb年龄谐和曲线图和年龄分布直方图 Fig. 4 Zircon U-Pb concordia diagrams and U-Pb age histograms of volcanic rocks from the Kalagailei deposit a、b-流纹岩;c、d-安山岩;e、f-霏细岩 a,b-rhyolite;c,d-andesite;e,f-feliste

4.2 岩石成因及构造意义

西天山由北向南分别为北天山、中天山和南天山。中天山与北天山以Nikolaev-那拉提山北缘断裂为界,整体呈近东西分布,帖尔斯克依古洋存在于早古生代哈萨克斯坦-伊犁板块与塔里木地块之间。此时中天山可能是塔里木地块北缘活动陆缘,研究显示帖尔斯克依古洋呈南北双向俯冲,并在奥陶纪关闭(境内部分关闭时间可能响应稍晚)(高俊等,2009;Gao et al., 2009;薛春纪等,2014a)。在吉尔吉斯斯坦沿Nikolaev断裂附近发育有寒武纪-早奥陶世Arenigian单元洋壳-岛弧杂岩,其上覆盖有435~470Ma花岗岩(Konopelko et al., 2011;Kiselev, 1999),在那拉提山北缘夏特附近发现有516MaT型洋中脊玄武岩(Qian et al., 2009)。在东天山博格达东段也发现有早泥盆世火山岩(崔方磊等,2015)。本次所采集的矿区流纹岩、安山岩、霏细岩年龄相近(443Ma、437Ma、451Ma),主要为晚奥陶世晚期到早志留世早期。前人通过区域地质调查研究将矿区火山岩划归为下石炭统大哈拉军山组,与本次测试结果不同,相对更精确的实验分析结果显示矿区火山岩为上奥陶统。在该时期帖尔斯克依洋基本闭合,中天山地块与伊犁-哈萨克斯坦板块发生拼贴,矿区火山岩是否为帖尔斯克依洋板片俯冲的结果?

图5 卡拉盖雷火山岩地球化学图解 Fig. 5 Geochemical diagrams of volcanic rocks from the Kalagailei deposit a-(Na2O+K2O)-SiO2系列判别图(底图据Irvine et al.,1971);b-Sr/Y-Y图解(底图据Defant et al.,1990);c-La/Sm-La图解;d-Rb-Sr图解 a-(Na2O+K2O)vs SiO2diagram(based on Irvine et al.,1971);b-Sr/Y vs Y diagram(based on Defant et al.,1990);c-La/Sm vs La diagram;d- Rb vs Sr diagram

图6 火山岩环境判别图解(底图据Dereje Ayalew et al., 2011) Fig. 6 Tectonic setting diagrams of volcanic rocks(after Dereje Ayalew et al., 2011)

相对吉尔吉斯斯坦和乌兹别克斯坦,我国境内的中天山出露较窄,主要为前寒武变质基底和下古生界海相细碎屑岩-碳酸盐岩及中-酸性火山岩、火山碎屑岩(薛春纪等,2014b)。在那拉提北缘也曾发现516Ma的T-MORB型玄武岩,认为与境外吉尔吉斯斯坦早古生代Terskey蛇绿岩相连(Qian et al.,2009),夏特地区也有470~460Ma钙碱性花岗岩分布(Kiselev, 1999;Konopelko et al., 2008),新疆干沟一带志留纪前陆盆地的陆源锆石最新年龄不小于461Ma(朱宝清等,2002),新疆拉尔墩达坂钾长花岗岩锆石U-Pb年龄测得为457Ma(韩宝福等,2004),表明Nikoleav线可能延入我国并且境内帖尔斯克依洋关闭时间大约在早奥陶世晚期(薛春纪等,2004b)。本次实验所得卡拉盖雷矿区主要的酸性火山岩年代为451~437Ma,可能处于碰撞造山后期;与之前认为的火山岩属下石炭统大哈拉军山组的认识不同,应是一套上奥陶统火山岩。最新研究显示,卡拉盖雷矿区辉钼矿Re-Os等时线年龄为449.9Ma(葛瑞涛等,2017,未发表),与本次研究的火山岩年龄(451~437Ma)相近,表明岩浆活动与成矿作用密切相关。

圣驾东行幸,祥云五色从。 仰天呈赋颂,就日想音容。 咫尺犹千里,艰难近九重。 恩光遍照处,还是旧盘峰。

5 结论

(1)卡拉盖雷矿区出露一套连续的基性-酸性火山岩,矿区酸性火山岩年龄大致范围为451~437Ma,这与之前一直被认为的下石炭统地层不同;

(2)酸性火山岩主要为亚碱性系列,K2O含量相对偏高、轻稀土元素相对富集并亏损Eu,元素Nb、Sr相对亏损,综合分析认为岩浆主要经历的结晶分异作用,受俯冲板片的影响,相对过铝,总体为大陆弧的性质,可能形成于碰撞后期的拉伸环境;

(3)火山岩年龄与最新的本矿区辉钼矿Re-Os等时线年龄(449.9Ma,葛瑞涛等,未发表)相近,暗示了成矿发生在晚奥陶世晚期,且成岩成矿活动密切相关。

致谢:在野外地质调查中得到了孙升升硕士、张永硕士、牛光司机等同志的大力帮助,在论文完成过程中得到了郑伟博士、赵晓波博士及实验室相关工作人员的指导和帮助,在此一并表示感谢!

第二,法人。《浙江省村经济合作社组织条例》第十三条和第十五条规定,农村集体经济组织的证明书由县级人民政府免费发放。可以选择向工商登记部门申请,从而取得法人营业资格,具体办法参照农民专业合作社登记办法。但是这里只是说可以自由选择是否申请,而且取得法人资格之后,是何种法人类型也没有明确的定性。

[References]

Belousova E, Griffin W L, O'Reilly S Y, Fisher N I I. 2002. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,143(5):602-622

Cui Fang-lei, Wang Xiao-wei, Ma Zhong-ping, Sun Ji-ming, Zhu Xiao-hui. 2015.Comparison of genesis of Devonian volcanic rocks in the Bogeda and Harlik areas and its tectonic implications[J]. Geology and Exploration, 51(3): 519-533(in Chinese with English abstract)

Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347:662-665

Dereje Ayalew,Akira Ishiwatari. 2011.Comparison of rhyolites from continental rift, continental arc and oceanic island arc: Implication for the mechanism of silicic magma generation[J]. Island Arc, 20(1):78-93

Du Ya-long, Li Zhi-ming, Jiang Han-bing, Wang Li-she, Yang Wei-zhong, Zhang Zhou-yuan, Zhan Xiao-di. 2016. Geological characteristics and tectonic setting of the Katebasu Au-Cu deposit in Xinjiang[J]. Geology and Exploration, 52(1):98-107(in Chinese with English abstract)

Gao J, Long L L, Reiner Klemd, Qian Q, Liu D Y, Xiong X M, Su W, Liu W, Wang Y T, Yang F Q. 2009. Tectonic evolution of the South Tianshan orogeny and adjacent regions, NW China: Geochemical and age contraints of granitoid[J]. International Journal of Earth Sciences, 98:1221-1238

Gao Jun, Qian Qing, Long Ling-li, Zhang Xi, Li Ji-lei, Su Wen. 2009. Accretionary orogenic process of western Tianshan, China[J]. Geological Bulletin of China, 28(12):1804-1816(in Chinese with English abstract)

GeWen-sheng, Li Xiao-fei, Xue Yun-qing, Guo Peng-zhi, Jia Qi, Fu Qiang, Han Dong, Qiu Li-gang, Liu Ya-ran. 2013. Metallogenic geological background of the Kalagailei copper-gold deposit in Zhaosu County, Xinjiang[J]. Acta Geoscientica Sinica, 34(3):275-286(in Chinese with English abstract)

Guo Peng-zhi, Shen Li-xia, Ge Wen-sheng, Xue Yun-qing, Li Wen-sheng. 2012a. Petro-geochemistry of Kalagailei Cu-Co-Au deposit in Zhaosu county, Xinjiang[J]. Contributions to Geology and Mineral Resources Research, 27(3):291-299(in Chinese with English abstract)

Guo Peng-zhi, Shen Li-xia, Ge Wen-sheng, Xue Yun-qing, Li Wen-sheng. 2012b. Study on the fluid inclusion and isotope of the Kalagailei Cu-Co-Au deposit in Zhaosu county, Xinjiang[J]. Geological Survey and Research, 35(2):14-153(in Chinese with English abstract)

Han Bao-fu, He Guo-qi, Wu Tai-ran, Li Hui-min. 2004. Zircon U-Pb dating and geochemical features of Early Paleozoic granites from Tianshan, Xinjiang: Implications for tectonic evolution[J]. Xinjiang Geology, 22(1):4-11(in Chinese with English abstract)

Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4):423-439

Irvine T N,Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8: 523-548

Kiselev V. 1999. U-Pb zircon geochronology of magmatic occurrences of the Northern Tien Shan[M]. Problems of Geology and Geography in Kyrgyzstan. Izvestyiya National’ noy Akademii. Nauk Kyrgyzskay Respublica:21-33

Konopelko D L, Biske Y S, Kullerud K, Seltmann R, Diaev F K. 2011. The Koshrabad granite massif in Uzbekistan: Petrogenesis, metallogeny, and geodynamic setting[J]. Russian Geology and Geophysics, 52:1563-1573

Konopelko D, Biske G, Seltmann R, Kiseleva M, Matukov D, Sergeev S. 2008. Deciphering Caledonian events: Timing and geochemistry of the Caledonian magmatic arc in the Kyrgyz Tien Shan[J]. Journal of Asian Earth Sciences, 32:131-141

Li Xiao-fei, Ge Wen-sheng, Xue Yun-qing, Jia Qi, Guo Peng-zhi, Fu Qiang, Zhang Rui-hua, Zhang Zhi-wei, Feng Xiao-zhen, Zhang Rong. 2013. Geological-geochemical characteristics and genesis of Kalagailei copper-gold deposit in Zhaosu county, Xinjiang[J]. Geoscience, 27(4):859-868(in Chinese with English abstract)

Liu Y.S., Gao S., Hu Z.C., Gao C.G., Zong K.Q.,Wang D.B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51:537-571

Ludwig K.R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. California, Berkeley:Berkeley Geochronology Center:39

Mao Qi-gui, Wang Jing-bin, Fang Tong-hui, Yu Ming-jie, Sun Yan. 2017. Discovery of the middle Devonian Yudai porphyric Cu(Au) deposit in the Kalatage area of eastern Tianshan Mountain, Xinjiang and its geological prospecting significance[J]. Geology and Exploration, 53(1):1-11(in Chinese with English abstract)

Qian Q,Gao J, Klemd R, He G Q, Song B, Liu D Y, Xu R H. 2009. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China[J]. International Journal of Earth Sciences, 98:551-596

Shen Li-xia, Guo Peng-zhi, Li Wen-sheng, Jia Qi, Duan Hong-fang, Ren Xiao-wu. 2014. Tectonic background discrimination of the volcanic rocks in Kalagailei Cu-Co-Au deposit in Zhaosu county, Xinjiang[J]. Geological Survey and Research, 37(1):13-19(in Chinese with English abstract)

Sun S S,McDonough. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42:313-345

Wang Hai-tao, Gao Wei, Ma Hai-jun. 2007. Type of major ore deposit, ore-controlling factors in Nalati mineralization belt and study on minerliation regularity[J]. Xinjiang Geology, 25(3):253-257(in Chinese with English abstract)

Xue Chun-ji, Zhao Xiao-bo, Mo Xuan-xue, Chen Yu-chuan, Dong Lian-hui, Gu Xue-xiang, Zhang Zhao-chong, Bakhtiar Nurtaev, Nikolay Pak, Li Zhi-dan, Wang Xin-li, Zhang Guo-zhen, Yaxier Yalikun, Feng Bo, Zu Bo, Liu Jia-ying. 2014a. Tectonic-metallogenic evolution of Western Tianshan Giant Au-Cu-Zn-Pb metallogenic belt and prospecting orietation[J]. Acta Geologica Sinica, 88(12):2490-2530(in Chinese with English abstract)

Xue Chun-ji, Zhao Xiao-bo, Mo Xuan-xue, Dong Lian-hui, Gu Xue-xiang, Bakhtiar Nurtaev, Nikolay Pak, Zhang Zhao-chong, Wang Xin-li, Zu Bo, Zhang Guo-zhen, Feng Bo, Liu Jjia-ying. 2014b. Asian Gold Belt in western Tianshan and its dynamic setting, metallogenic control and exploration[J]. Earth Science Frontiers, 21(5):128-155(in Chinese with English abstract)

Xue Lan-hua, Shi Lao-hu, Zhang Zhi-jun, Shen Liu-sheng. 2016. Breccia pipe and its constrain on copper mineralization in Kalagailei mine, Xinjiang Povince[J]. Gold Science and Technology, 24(1):23-27(in Chinese with English abstract)

Yang Fu-cheng, Li Wen-chang, Liu Xue-long, Yan Ting-long, Wang Shuai-shuai, Luo Yun. 2017. Rock genesis and dynamic background of the Relin monzogranite in the Geza Arc Belt, Yunnan: Constrains from petrogeochemistry, chronology and Hf isotope[J]. Geology and Exploration, 53(2): 283-299(in Chinese with English abstract)

Zheng W, Mao J W, Pirajno F, Zhao H J, Zhao C S, Mao Z H, Wang Y J. 2015. Geochronology and geochemistry of the Shilu Cu-Mo deposit in the Yunkai area,Guangdong Province, South China and its implication[J]. Ore Geology Reviews, 67:382-398

Zheng W, Mao J W, Zhao H J, Zhao C S, Yu X F. 2017a. Two Late Cretaceous A-type granites related to the Yingwuling W-Sn polymetallic mineralization in Guangdong province,South China:Implications for petrogenesis, geodynamic setting,and mineralization[J]. Lithos, 274-275:106-122

Zheng W, Mao J W, Zhao H J, Ouyang H G, Zhao C S, Yu X F. 2017b. Geochemistry, Sr-Nd-Pb-Hf isotopes systematics and geochronological constrains on petrogenesis of the Xishan A-type granite and associated W-Sn mineralization in Guangdong province, South China[J]. Ore Geology Reviews, 88:739-752

Zheng W, Mao J W, Zhao C S,Yu X F, Zhao H J, Ouyang Z X, Wu X D. 2017c. Early Cretaceous magmatism and associated polymetallic mineralization in South China: The Tiantang example[J]. International Geology Review:1-21. doi:10.1080/00206814.2017.1326180

Zheng Wei, Chen Mao-hong, Zhao Hai-jie, Zhao Cai-sheng, Hou Ke-jun, Liu Jian-xin, Li Xue-meng, Chang Li-zhong. 2013. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Yingwuling tungsten polymetallic deposit in Guangdong Province and its geological significance[J]. Acta Petrologica Sinica, 29(12):4121-4135(in Chinese with English abstract)

Zhu Bao-qing, Feng Yi-min, Yang Jun-lu, Zhang Kai-chun. 2002. Discovery of ophiolitic mélange and Silurian foreland basin at Gangou of Tokxun, Xinjiang and their tectonic significance[J]. Xinjiang Geology, 20(4):326-330(in Chinese with English abstract)

Zhu Yu-yin, Wang Tian-guo, Huang Chao-wen, Dai Ta-gen, Yang Liu, CHONG Khai Yuen, Du Gao-feng. 2017. Petrology, geochemistry and geological significance of andesites of Jintan gold orefield in Eastern Tianshan, Xinjiang[J]. Journal of Central South University (Science and Technology), 48(10):2697-2708(in Chinese with English abstract)

Zong K Q, Klemd R, Yuan Y, He Z Y, Guo J L, Shi X L, Liu Y S, Hu Z C, Zhang Z M. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 290:32-48

[附中文参考文献]

崔方磊,汪晓伟,马中平,孙吉明,朱小辉. 2015. 博格达与哈尔里克早泥盆世火山岩成因对比及其构造意义[J]. 地质与勘探,51(3):519-533

杜亚龙,李智明,姜寒冰,王立社,杨维忠,张洲远,詹小弟.2016.新疆卡特巴阿苏金铜矿床地质特征及构造环境[J] 地质与勘探,52(1):98-107

高 俊,钱 青,龙灵利,张 喜,李继磊,苏 文.2009.西天山的增生造山过程[J]. 地质通报,28(12):1804-1816

葛文胜,李小飞,薛运清,郭鹏志,贾 琦,付 强,韩 冬,裘立刚,刘亚然.2013.新疆昭苏卡拉盖雷铜金矿床成矿地质背景探讨[J]. 地球学报,34(3):275-285

郭鹏志,沈利霞,葛文胜,薛运清,李文圣.2012a.新疆昭苏卡拉盖雷铜钴金矿区岩石地球化学特征[J]. 地质找矿论丛,27(3):291-299

郭鹏志,沈利霞,葛文胜,薛运清,李文圣.2012b.新疆昭苏卡拉盖雷铜钴金矿床成矿流体特征研究[J]. 地质调查与研究,35(2):146-153.

韩宝福,何国琦,吴泰然,李惠民.2004.天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J]. 新疆地质,22(1):4-11

李小飞,葛文胜,薛运清,贾 琦,郭鹏志,付 强,张瑞华,张志伟,冯小珍,张 荣.2013.新疆昭苏卡拉盖雷铜金矿床地质地球化学特征及成因探讨[J]. 现代地质, 27(4): 859-868

毛启贵,王京彬,方同辉,于明杰,孙 燕.2017.新疆东天山卡拉塔格地区中泥盆世玉带斑岩铜(金)矿发现的地质找矿意义[J].地质与勘探, 53(1):1-11

沈利霞,郭鹏志,李文胜,贾 琦,段洪芳,任小武.2014.新疆昭苏卡拉盖雷铜钴金矿区火山岩地层构造环境判别[J]. 地质调查与研究,37(1):13-19

王海涛,高 纬,马海军.2007.新疆那拉提成矿带主要成矿类型、控矿地质因素及成矿规律探讨[J]. 新疆地质,25(3):253-257

薛春纪,赵晓波,莫宣学,陈毓川,董连慧,顾雪祥,张招崇,Bakhtiar Nurtaev,Nikolay Pak,李志丹,王新利,张国震,亚夏尔亚力坤,冯 博,俎 波,刘家瑛.2014a.西天山巨型金铜铅锌成矿带构造成矿演化和找矿方向[J]. 地质学报,88(12): 2490-2530

薛春纪,赵晓波,莫宣学,董连慧,顾雪祥,Bakhtiar Nurtaev,Nikolay Pak,张招崇,王新利,俎 波,张国震,冯 博,刘家瑛.2014b.西天山“亚洲金腰带”及其动力背景和成矿控制与找矿[J]. 地学前缘, 21(5):128-155

薛兰花,史老虎,张志军,沈柳生.2016.新疆卡拉盖雷铜矿隐爆角砾岩地质特征及控矿作用[J]. 黄金科学技术,(01):23-27

杨富成,李文昌,刘学龙,彦廷龙,王帅帅,罗 云.2017.格咱岛弧带热林二长花岗岩的岩石成因及动力学背景:岩石地球化学、年代学及Hf同位素约束[J].地质与勘探,53(2):283-299

张 荣.2016.卡拉盖雷铜金钴矿隐爆角砾岩地质特征及控矿与矿作用[J]. 现代矿业,(12):104-107

郑 伟,陈懋弘,赵海杰,赵财胜,侯可军,刘建新,李学孟,常利忠.2013.广东鹦鹉岭钨多金属矿床中黑云母花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素特征及其地质意义[J]. 岩石学报,29(12):4121-4135

朱余银,王天国,黄超文,戴塔根,杨 柳,Chong Khai Yuen,杜高峰. 2017. 新疆东天山金滩金矿区安山岩岩石学、地球化学及地质意义[J]. 中南大学学报(自然科学版),48(10):2697-2708

朱宝清,冯益民,杨军录,张开春.2002.新疆中天山干沟一带蛇绿混杂岩和志留纪前陆盆地的发现及其意义[J]. 新疆地质, 20(4):326-330

齐天骄,薛春纪,葛瑞涛,罗晖
《地质与勘探》 2018年第02期
《地质与勘探》2018年第02期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号