更全的杂志信息网

植物水通道蛋白的干旱应答机制研究进展

更新时间:2009-03-28

干旱胁迫是导致作物减产的非生物胁迫之一,通常干旱等各种逆境胁迫会使植物水分失衡而导致逆境伤害,因此逆境胁迫下植物维持水分平衡的机理一直是抗逆研究的热点。水通道蛋白(aquaporins,AQPs),又称水孔蛋白,主要的内在蛋白(major intrinsic proteins, MIPs),位于细胞膜上的一类膜通道蛋白(26~34 kDa),具有底物特异双向通透能力,能通透水、不带电小分子(硅酸、尿素、甘油、硼酸)或气体(CO2、氨气)等。Maurel et al(1993)从拟南芥(Arabidopsis thaliana)中分离出第1个植物水通道蛋白,并证明其转运水分的功能。在共质体途径,水分通过细胞质和细胞膜进入细胞。流经根中的水有70%~90%是通过细胞膜上的AQPs来传输的(Barrowclough et al, 2000)。在1MPa压力下,AQPs每秒能运输109个水分子(Fujiyoshi et al, 2002)。AQPs能依赖渗透势高效介导水分跨膜转运,是细胞内和细胞间水分运输的主要通道,在维持细胞渗透平衡和调节植物生理过程中发挥重要作用(Maurel et al, 2008)。

本研究从分类、结构、表达调控与活性调节及干旱胁迫下植物AQPs的表达四个方面详细介绍植物AQPs。此外,还重点概述了与AQPs相关的植物干旱胁迫应答机制的最新研究进展,并探讨了一些转AQPs基因植物的抗旱试验结果。

1 植物AQPs分类

迄今已发现100多种AQPs(Srivastava et al, 2016),根据AQPs序列同源性、亚细胞定位及结构特征,可归纳为七类:质膜内在蛋白PIPs(plasma membrane intrinsic proteins)、液泡膜内在蛋白TIPs(tonoplast intrinsic proteins)、类NOD26膜内在蛋白NIPs(nodulin 26-like intrinsic proteins)、小分子碱性膜内在蛋白SIPs(small basic intrinsic proteins)、类GlpF膜内在蛋白GIPs(glycerol facilitator-like intrinsic proteins)(Gustavsson et al, 2005)、混合内在蛋白HIPs(hybrid intrinsic proteins)及X内在蛋白XIPs(uncategorized X intrinsic proteins)(Danielson & Johanson, 2008; Javot, 2002; Siefritz et al, 2002)。目前除苔藓和卷柏外,其它植物的AQPs都无GIPs,苔藓和卷柏存在GIPs是否与其喜欢生长在潮湿环境有关,可进一步研究。某些双子叶植物、原核生物及真菌存在XIPs,但在高等植物中至今未发现HIPs(表1)。植物AQPs(XIPs、HIPs和GIPs)在系统进化过程中丢失,需进一步通过序列分析及鉴定XIPs、HIPs和GIPs功能, 为系统研究AQPs的生物多样性及进化过程提供依据。

 

1 高等植物中水孔蛋白的多样性Table 1 Aquaporin diversity across green plants (Viridiplantae) kingdom

  

物种SpeciesPIPsTIPsNIPsSIPsXIPsHIPsGIPs合计Total 参考文献Reference拟南芥Arabidopsis thaliana1310930 35Quigley et al, 2001玉米Zea mays131253033Chaumont et al, 2001水稻Oryza sativa1110102033Sakurai et al, 2005葡萄Vitis vinifera71182230Shelden et al, 2009小麦Triticum aestivum201142037Forrest & Bhave, 2008; Pandey et al, 2013苔藓Physcomitrella patens845221123Danielson et al, 2008陆地棉Gossypium hirsutum2823127171Park et al, 2010湿地白杨Populus trichocarpa1517116655Gupta & Sankararamakrishnan, 2009卷柏Selaginella moellendorffii32813219Anderberg et al, 2012马尾Equisetum arvense2290013Grégoire et al, 2012西红柿Solanum lycopersicum1411124647Reuscher et al, 2013马铃薯Solanum tuberosum1511103847Venkatesh et al, 2013大豆Glycine max2223136266Da et al, 2013大白菜Brassica rapa2114156056Diehn et al, 2015; Tao et al, 2014白云杉Picea glauca16941030Laur & Hacke, 2014甜橙Citrus sinensis81193334Martins et al, 2015卷心菜Brassica oleracea2418155062Diehn et al, 2015菜豆Phaseolus vulgaris1213104241Ariani & Gepts, 2015蓖麻子Ricinus communis10984637Ariani & Gepts, 2015橡胶树Hevea brasiliensis151794651Zou et al, 2015香蕉Musa acuminate181793047Hu et al, 2015高粱Sorghum bicolor1413113041Hu et al, 2015大麦Hordeum vulgare191182040Hove et al, 2015麻风树Hevea brasiliensis9984232Zhi et al, 2016亚麻Linum usitatissimum1617132351Shivaraj et al, 2017

2 植物AQPs结构特点

AQPs的一级结构包含6个α跨膜螺旋(TM1-TM6),且有5个环(LA-LE)相连,其中有2个胞内环(LB、LD)和3个胞外环(LA、LC、LE),分别位于膜的两侧(图1:A)。疏水性环LB和LE各含有一段高度保守的氨基酸序列Asn-Pro-Ala,即NPA盒,直接参与运输水的通道形成,是植物AQPs的重要序列特征,E环对外界环境敏感,能启动AQP的功能,同时B环和E环各形成半个跨膜螺旋(HB、HE)参与AQPs活性调控,其余环是亲水性环。AQP的双向运输水分子孔道是由2个NPA基序与6个跨膜螺旋形成,其收缩芳香族化合物/精氨酸(aromatic/Arg, ar/R)四聚体结构存在于NPA盒外侧0.8 nm处,分别由LE上的2个氨基酸残基和HB、HE上各1个氨基酸残基组成,有1个AEF(Ala-Glu-Phe)或AEFXXT在N端结构域(Sui et al, 2001)。一些AQPs的N端存在“DXE”基序是其从内质网外运的信号,而C端存在负责AQPs内化的保守磷酸化位点(师恭曜等, 2012)。AQPs的选择性主要来源于排阻效应,由NPA序列、ar/R结构、弱相互作用3个因素决定(De et al, 2003; Fujiyoshi et al, 2002; Robinson et al, 1996)。每个AQP单体都可形成独立的水通道(Fetter et al, 2004)。 AQPs的四聚体结构, 对于形成AQPs的稳定结构和准确的功能表达起重要作用(图1:B,C)。蛋白质结构构象多样性可导致不同的生物体对环境适应性差异。Berny et al (2016)认为相比于细胞单独表达PIP2s,推测可能是异聚化引起的玉米原生质体上共表达ZmPIP1和ZmPIP2s的直接互作,导致细胞导水率的增加。因此,不同植物水通道蛋白单体的拓扑结构和聚合角度存在差异,导致每种植物AQPs具有其独特的功能。

3 植物AQPs表达调控与活性调节

植物AQPs调节方式分为转录水平和转录后水平调节。转录过程中,AQPs活性受AQPs合成速度调节,这种方式调节速度较慢,调节方式受植物生长因素影响。转录后水平调控主要包括AQPs活性的门控机制和蛋白酶的降解。影响AQPs门控行为包括磷酸化(Törnroth-Horsefield et al, 2005)、去磷酸化(Yaaran & Moshelion, 2016)、基因异源化、pH、Ca2+、活性氧(ROS)等因素。目前对植物AQPs表达调控与活性调节的研究多集中在PIPs上。调控PIPs表达与活性主要表现在转录水平受环境因素(干旱等)和内源性信号(脱落酸等)影响,在转录后水平受翻译后膜转运水平和门控水平影响。PIPs翻译后膜转运水平包括翻译后修饰、再循环利用(内吞和外排)、自噬降解、蛋白酶降解。PIPs门控水平包括胞质酸化、Ca2+、活性氧(ROS),最终调节膜的导水率(Zargar et al, 2017)。

干旱下,植物气孔关闭,胞间CO2分压降低,光合作用减弱,增加气孔导度来补偿细胞间CO2可用性(Groszmann et al, 2016),大部分AQPs基因表达量下调,使AQPs活性降低,植物抗旱性提高,从而稳定植物体水分含量,提高植物水分利用率。干旱下植物木质部薄壁组织细胞增加大量AQPs,加强质外体和共质体间的水分交换来响应水分胁迫(Secchi et al, 2017)。AQPs在植物根、茎、叶中均有表达,一般根中表达量最高,且不同基因家族、不同基因间的组织表达模式存在差异,具有透水能力的AQPs多集中于PIPs和TIPs。在细胞水平,PIPs负责水分的吸收与外排,TIPs负责调节膨压,使细胞结构的完整性得以维持(Fotiadis et al, 2001)。干旱破坏细胞渗透平衡时,PIPs和TIPs调节根系导水率和蒸腾速率。PIP1和PIP2亚型高度表达主要集中在根和叶的维管组织,且PIP2亚家族似乎比PIP1运输水分的效率更高(urbanovski et al, 2013),表明PIP2家族在胁迫条件下受到异位蛋白影响比PIP1家族大。

4 干旱胁迫下植物AQPs的表达

基于文献[16],不失一般性,将异构多智能体编队控制的变时延问题转化为时延上界的求解问题.由于时延上界τ0满足τ0

植物AQPs的表达不仅与植物的种类有关,还与干旱时间、发育阶段以及环境条件有关。在干旱胁迫下,拟南芥和水稻叶片中AQPs的转录调控较复杂,大多数AQPs的表达有下降的趋势,但有些却增加。拟南芥AtPIP2;1和AtPIP2;2在干旱胁迫下表达下调(Jin, 2015),但也有AtPIP1;3、AtPIP1;4等少数AtPIPs表达量增加(Alexandersson et al, 2010, 2005)。绝大多数被抑制拟南芥AQPs表达会逐渐恢复到胁迫前水平,但缺乏功能性PIP明显复苏缓慢(Secchi & Zwieniecki, 2014)。AQPs有利于植物适应干旱环境,特别是促进植物干旱后的复水,但仍不清楚其具体作用机制。AQPs是水稻水分利用效率的主要决定因素(Nada & Abogadallah, 2014)。Grondin et al (2016)发现干旱胁迫下6个水稻品种根中PIP2;1,PIP1;3,PIP2;2,PIP1;1,PIP1;2,PIP2;8表达量明显降低。Li et al (2008)用15% PEG-6000处理水稻,发现OsTIP1;1、OsTIP1;2和OsTIP4;2在叶子部分初始上调,而在10 h时开始下调;OsTIP2;2,OsTIP4;1初始下调,之后升高,OsTIP4;2也先升后降。可见水稻TIPs基因表达比PIPs更复杂,猜测干旱下水稻AQPs表达增强,可能与干旱初期根能够生成大量ABA, ABA能调节Ca2+、胞质pH值,活性氧,通过引导内化或封闭构象作用于PIPs膜转运调控,从而根系土壤中吸收更多水分。

4.1 植物AQPs响应干旱表达调控机制

迄今为止,植物耐旱过程中调控机制研究最为广泛的一类AQPs是PIPs。干旱下, PIPs膜转运调控PIPs表达和活性,从而减少植物水分流失和提高植物水势。干旱诱导脱落酸(abscisic acid, ABA)直接或间接调控多数PIPs活性,但ABA对PIPs的调控有争议。有研究提出ABA能使PIPs表达上调,但也有研究者认为ABA会抑制PIPs的表达。本研究ABA和HgCl2预处理下,启动子中AuxRE和ABRE元件可能是诱导番茄叶片AQPs上调表达的主要因素(Liu et al, 2016)。ABA分别通过自噬降解途径 (Hachez et al, 2014)和蛋白体降解途径(Liu et al, 2016)减少富含色氨酸的感受蛋白或转运蛋白(tryptophan-rich sensory protein/translocator, TSPO )和膜锚定泛素连接酶E3(a RING membrane anchor E3 ubiquitin ligase, Rma1H1),调控某些PIPs表达。ABA同时能调节Ca2+、胞质pH值,活性氧,通过引导内化或封闭构象作用于PIPs膜转运调控(Prado & Maurel, 2013)(图2)。Vinnakota et al (2016)研究发现水稻耐旱与不耐旱品种保卫细胞的PIP1和PIP2基因表达一致,而两个耐旱品种的气孔保卫细胞渗透性存在明显差异。气孔保卫细胞利用磷酸化,调节ABA引起气孔关闭的水通道蛋白显著(Assmann & Jegla, 2016)。暗示可从不同抗旱品种气孔保卫细胞PIPs来研究AQPs有效门控机制。

2.2.2.1 ALL患者首次CR后 3个月 此阶段9份标本,MRD阳性4 例,其中3例分别在MRD阳性后7个月内复发,1例未复发;MRD阴性5例,仅1例在MRD阴性后5个月复发。两组复发率差异无统计学意义(P=0.206)。MRD阳性组及MRD阴性组的中位RFS分别为4.5个月(0~10个月)、8.0个月(5~16个月),两组差异有统计学意义(P<0.05),见图4。

  

注: 关闭状态 Cd2 +在氨基尾端(红色),D环固定到尾端。亮氨酸197残基 (箭头所指)充当疏水闸门,中断孔隙中蓝色水分子的连续性。Note: In the closed state, binding of a Cd2+ ion on the N-terminal tail (red) is shown, loop D is anchored to this tail. Leu 197 residue (arrow) acts as a hydrophobic gate and interrupts the continuity of water molecules (blue) in the pore.图 1 AQP一级结构 (A) (Zargar et al, 2017)和AQP打开构象 (B)及AQP封闭构象 (C) (Maurel, 2007)Fig. 1 Primary structure of AQP (A)(Zargar et al, 2017), opened conformation of AQP (B) and closed conformation of AQP (C ) (Maurel, 2007).

  

图 2 PIPs干旱应答调控的初步模型 (Zargar et al, 2017)Fig. 2 A tentative model of PIPs regulation in response to drought stress (Zargar et al, 2017)

4.2 AQPs表达的时空特异性

阿东心里一阵疼,眼泪哗哗,顿时便流得满脸。他忙了一天丧事,责任重大,甚至连哭的机会都没给他。这一刻,他却隐忍不住了。邻居一走,他也号啕出声。

4.3 AQPs的表达和蛋白丰度

植物AQPs的表达与蛋白丰度对干旱胁迫会产生不同的应答。Jang et al (2017)认为拟南芥AQPs丰度的调控对干旱条件下的吸水能力没有明显的影响。一般来说,在干旱条件下,PIP2丰度会下降,同时PIP1蛋白会积累,但PIP蛋白丰度与吸水能力没有明显联系。然而,NtTIP1在烟草中的表达丰度与烟草的抗旱性密切相关,其表达量在干旱敏感品种中明显下调,而在耐旱品种中明显上调(夏宗良等, 2013)。在干旱条件下,耐旱和干旱敏感品种中的NtTIP1表现出不同的响应模式,表明每个水通道蛋白基因有不同的作用。NtTIP1在耐旱品种中能提高植物抗旱性,可能是因为其表达上调使通道活性增强,从而促进细胞或液泡的水分运输,平衡体内外的渗透压。转录水平上的基因表达调控主要受转录因子与启动子的影响。在不同耐旱品种中,AQPs对干旱胁迫的响应有差异,暗示该基因的转录调控因子或启动子在敏感品种、耐旱品种中可能存在不同,有待进一步研究。当使用不同AQPs抑制剂处理时, AQPs的表达和蛋白丰度影响植物导水率(Devi et al, 2016)。可见AQPs基因表达和蛋白丰度与逆境条件下的水分状况间的内在联系尚不明确。

4.4 AQPs基因的耐旱转化

通过转AQPs基因来改善植物逆境下的表现,观察到大部分AQPs过表达可提高植物的耐旱性,但其效应在不同植物和不同AQPs基因并不一致。干旱胁迫时,NtPIP1;1和NtPIP2;1在烟草(Nicotiana tabacum)中表达下调,使烟草根部渗透导水率下降。而在体外表达中,各自单独表达的水通道活性明显低于两者共表达的水通道活性,表明NtPIP1;1和NtPIP2;1以异源四聚体的形式组成水通道(Mahdieh et al, 2008)。说明可能异源水通道蛋白基因在植物中过表达,它在植物中不能准确调控,甚至有可能影响自身环境胁迫应答机制。Lian et al (2006)发现将响应胁迫的启动子和表达显著地受到水分胁迫诱导山地抗旱水稻中的OsPIP1;3基因一起转化低地不抗旱水稻品种,可明显提高水稻抗旱性,表明在干旱胁迫下,相同物种的不同植物品种AQPs基因的表达可能不同。Zhuang et al (2015)研究发现FaPIP2;1在拟南芥中过表达,干旱下转基因植物比野生型保持更高的叶片相对含水量、叶绿素含量、净光合速率和更低的叶片质膜透性,其抗旱性提高。Martins et al (2017)研究发现柑橘CsTIP2;1在烟草中过表达,转基因植物在干旱下胁迫下的抗氧化和适应环境生长能力提高。但Li et al (2015)研究发现AcPIP2在拟南芥中过表达,反而加剧其敏旱性。Lee et al (2009)研究发现干旱胁迫诱导转基因拟南芥Rma1H,膜锚定泛素连接酶E3,通过泛素调节AQPs表达水平。干旱下大部分AQPs过表达能观察到提高植物耐旱性,可能由于AQPs提高根系水分运输,稳定光合作用。可见AQPs基因的耐旱转化调控机制比预想的要复杂。

5 展望

近年来,AQPs表达特征及其与干旱环境的关系报道日益增多,是未来的研究焦点。AQPs干旱应答机制研究,可考虑以下几点:(1) 迄今对于干旱胁迫下AQPs 的研究多数在转录调控上,而聚合调控、门控机制及重新定位等对其活性影响更直接的作用机制的认识,尚不十分明确,阐明这些机理将有助于进一步认识AQPs。例如,AQPs参与保卫细胞气孔关闭,可从抗旱品种气孔保卫细胞AQPs来研究门控功能。(2) 迄今干旱条件下,AQPs研究主要集中在PIPs和TIPs,其它亚型基因功能研究甚少,比如只在苔藓和卷柏中存在的GIPs与抗旱机制有无关系。(3)通常逆境条件下,AQPs只能短暂平衡植物细胞水分,如果能把AQPs基因工程与抗旱渗透调节物质(甘露糖醇、6-磷酸海藻糖)结合起来研究,可能会提高作物抵御严重干旱和长期干旱的能力,将有助于改良和调控非抗旱植物的抗旱性。(4) 研究启动子的顺式作用元件和反式作用因子相互作用调控基因时空表达模式差异化机制。(5) 随着测序技术的发展,在基因组、转录组和蛋白质组水平上的探求,将为转基因技术培育优良抗旱作物提供依据,对于深入认识、系统阐述AQPs在植物干旱胁迫下的生理功能及其作用机制具有重要意义。

参考文献:

AFZAL Z, HOWTON T, SUNY, et al, 2016. The roles of aquaporins in plant stress responses [J]. J Dev Biol, 4(1): 9.

ALEXANDERSSON E, DANIELSON JÅH, RÅDA J, et al, 2010. Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress [J]. Plant J, 61(4): 650-660.

ALEXANDERSSON E, FRAYSSE L, SJOVALL-LARSEN S, et al, 2005. Whole gene family expression and drought stress regulation of aquaporins [J]. Plant Mol Biol, 59(3): 469-484.

ANDERBERG HI, KJELLBOM P, JOHANSON U, 2012. Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants [J]. Front Plant Sci, 3: 33.

ARIANI A, GEPTS P, 2015. Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.) [J]. Mol Genet Genom, 290(5): 1771-1785.

ASSMANN SM, JEGLA T, 2016. Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2 [J]. Curr Opin Plant Biol, 33: 157-167.

BARROWCLOUGH DE, PETERSON CA, STEUDLE E, 2000. Radial hydraulic conductivity along developing onion roots [J]. J Exp Biol, 51(51): 547-557.

BERNY MC, GILIS D, ROOMAN M, et al, 2016. Single mutation in the transmembrane domains of maize plasma membrane aquaporins affect the activity of monomers within a heterotetramer [J]. Mol Plant, 9(7): 986-1003.

CHAUMONT F, BARRIEU F, WOJCIK E, et al, 2001. Aquaporins constitute a large and highly divergent protein family in maize [J]. Plant Physiol, 125(3): 1206-1215.

CHRISPEELS MJ, 1997. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group [J]. Plant Physiol, 114(4): 1347-1357.

DANIELSON J, JOHANSON U, 2008. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens [J]. BMC Plant Biol, 8(1): 45.

DA YZ, ALI Z, CHANG BW, et al, 2013. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.) [J]. PLoS ONE, 8(2): e56312.

DIEHN TA, POMMERRENING B, BERNHARDT N, et al, 2015. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis [J]. Front Plant Sci, 6: 166.

DEVI MJ, SINCLAIR TR, JAIN M, et al, 2016. Leaf aquaporin transcript abundance in peanut genotypes diverging in expression of the limited-transpiration trait when subjected to differing vapor pressure deficits and aquaporin inhibitors [J]. Physiol Plant,156(4): 387-396.

FETTER K, WILDER VV, MOSHELION M, et al, 2004. Inte-ractions between plasma membrane aquaporins modulate their water channel activity [J]. Plant Cell, 16(1): 215-228.

FORREST KL, BHAVE M, 2008. The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features [J]. Funct Integr Genom, 8(2): 115-133.

FOTIADIS D, JENO P, MINI T, et al, 2001. Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes [J]. J Biol Chem, 276(3): 1707-1714.

FUJIYOSHI Y, MITSUOKA K, DEGROOT BL, et al. 2002. Structure and function of water channels [J]. Curr Opin Struc Biol, 12(4): 509-515.

GRÉGOIRE C, RÉMUS-BOREl W, VIVANCOS J, et al. 2012. Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense [J]. Plant J, 72(2): 320-330.

GRONDIN A, MAULEON R, VADEZ V, et al, 2016. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.) [J]. Plant Cell Environ, 39(2): 347-365.

GROOT BL, FRIGATO T, HELMS V, et al, 2003. The mechanism of proton exclusion in the aquaporin-1 water channel [J]. J Mol Biol, 333(2): 279-293.

GROSZMANN M, OSBORN HL, EVANS JR, 2016. Carbon dioxide and water transport through plant aquaporins [J]. Plant Cell Environ, 40(6): 938-961.

GUPTA AB, SANKARARAMAKRISHNAN R, 2009. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective [J]. BMC Plant Biol, 9(1): 134.

GUSTAVSSON S, LEBRUN AS, NORDEN K, et al. 2005. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels [J]. Plant Physiol, 139(1): 287-295.

HACHEZ C, VELJANOVSKI V, REINHARDT H, et al. 2014. The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation [J]. Plant Cell, 26(12): 4974-4990.

HOVE RM, ZIEMANN M, BHAVE M, 2015. Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family [J]. PLoS ONE, 10(6): e0128025.

HU W, HOU X, HUANG C, et al, 2015. Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in banana [J]. Int J Mol Sci, 16(8): 19728-19751.

JAVOT H, 2002. The role of aquaporins in root water uptake [J]. Ann Bot, 90(3): 301-313.

JANG JY, LEE SH, RHEE JY, et al, 2007. Transgenic Arabidopsis and tobacco plants over expressing an aquaporin respond differently to various abiotic stresses [J]. Plant Mol Biol, 64 (6): 621-632.

JIN M, 2015. The role of PIP aquaporins in response to various environmental scenarios in Arabidopsis thaliana [D]. Hohhot: Inner Mongolia University: 1-191.

LAUR J, HACKE UG, 2014. Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling [J]. New Phytol, 203(2): 388-400.

LEE HK, CHO SK, SON O, et al, 2009. Drought stress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants [J]. Plant Cell, 21(2): 622-641.

LI G, PENG Y, YU X, et al, 2008. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice [J]. J Plant Physiol, 165(18): 1879-1888.

LI J, YU G, SUN X, et al, 2015. AcPIP2, a plasma membrane intrinsic protein from halophyte Atriplex canescens, enhances plant growth rate and abiotic stress tolerance when overexpressed in Arabidopsis thaliana [J]. Plant Cell Rep, 34(8): 1401-1415.

LIAN HL, YU X, LANE D, et al, 2006. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment [J]. Cell Res, 16(7): 651-660.

LIU X, DONG X, LIU Z, et al, 2016. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss [J]. Plant Mol Biol, 92(3): 313-336.

LIU J, ZHANG C, WEI C, et al, 2016. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice [J]. Plant Physiol, 170(1): 429-443.

MAHDIEH M, MOSTAJERAN A, HORIE T, et al, 2008. Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants [J]. Plant Cell Physiol, 49(5): 801-813.

MARTINS CPS, PEDROSA AM, DU D, et al, 2015. Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.) [J]. PLoS ONE, 10(9): e138786.

MARTINS CPS, NEVES DM, CIDADE LC, et al, 2017. Expression of the citrus CsTIP2;1 gene improves tobacco plant growth, antioxidant capacity and physiological adaptation under stress conditions [J]. Planta, 245(5): 951-963.

MAUREL C, REIZER J, SCHROEDER JI, et al, 1993. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes [J]. Embo J, 12(6): 2241-2247.

MAUREL C, 2007. Plant aquaporins: Novel functions and regulation properties [J]. Febs Lett, 581(12): 2227-2236.

MAUREL C, VERDOUCQ L, LUU DT, et al, 2008. Plant aquaporins: membrane channels with multiple integrated functions [J]. Ann Rev Plant Biol, 59: 595-624.

NADA RM, ABOGADALLAH GM, 2014. Aquaporins are major determinants of water use efficiency of rice plants in the field [J]. Plant Sci, 227: 165-180.

PANDEY B, SHARMA P, PANDEY DM, et al, 2013. Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat [J]. Evol Bioinform Onl, 9(9): 437-452.

PARK W, SCHEFFLER BE, BAUER PJ, et al, 2010. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.) [J]. BMC Plant Biol, 10(1): 142.

PRADO K, MAUREL C, 2013. Regulation of leaf hydraulics: from molecular to whole plant levels [J]. Front Plant Sci, 4(2): 58-60.

QUIGLEY F, ROSENBERG JM, SHACHAR-HILL Y, et al, 2001. From genome to function: the Arabidopsis aquaporins [J]. Genome Biol, 3(1): 858-871.

REDDY PS, RAO TSRB, SHARMA KK, et al, 2015. Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.) [J]. Plant Gene, 1: 18-28.

REUSCHER S, AKIYAMA M, MORI C, et al, 2013. Genome-wide identification and expression analysis of aquaporins in tomato [J]. PLoS ONE, 8(11): e79052.

ROBINSON DG, SIEBER H, KAMMERLOHER W, et al, 1996. PIPl aquaporins are concentrated in plasmalemmasomes of Arabidopsis thaliana mesophy II [J]. Plant Physiol, 111: 645-649.

SAKURAI J, 2005. Identification of 33 rice aquaporin genes and analysis of their expression and function [J]. Plant Cell Physiol, 46(9): 1568-1577.

SECCHI F, PAGLIARANI C, ZWIENIECKI MA, 2017. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress [J]. Plant Cell Environ, 40(6): 858-871.

SECCHI F, ZWIENIECKI MA, 2014. Down-regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism [J]. Plant Physiol, 164(4): 1789-1799.

SHELDEN MC, HOWITT SM, KAISER BN, et al, 2009. Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera [J]. Funct Plant Biol, 36: 1065-1078.

SHIVARAJ SM, DESHMUKH RK, RAI R, et al, 2017. Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum) [J]. Sci Rep, 7: 46137.

SIEFRITZ F, TYREE MT, LOVISOLO C, et al, 2002. PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants [J]. Plant Cell, 14(4): 869-876.

SRIVASTAVA AK, PENNA S, DONG VN, et al, 2016. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses [J]. Crit Rev Biotechnol, 36(3): 389-398.

SUI H, HAN BG, LEE JK, et al, 2001. Structural basis of water-specific transport through the AQP1 water channel [J]. Nature, 414(6866): 872-878.

URBANOVSKI N, SARGENT DJ, ELSE MA, et al, 2013. Expression of Fragaria vesca PIP aquaporins in response to drought stress: PIP down-regulation correlates with the decline in substrate moisture content [J]. PLoS ONE, 8(9): e74945.

TAO P, ZHONG X, LI B, et al, 2014. Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis) [J]. Mol Genet Genom, 289(6): 1131-1145.

TORNROTH-HORSEFIELD S, WANG Y, HEDFALK K, et al, 2005. Structural mechanism of plant aquaporin gating [J]. Nature, 439(7077): 688-694.

SHI GY, WANG YM, HUA JP, 2012. Aquaporins and salt tolerance of higher plants [J]. J Agric Sci Technol, 14(4): 31-38. [师恭曜, 王玉美, 华金平, 2012. 水通道蛋白与高等植物的耐盐性 [J]. 中国农业科技导报, 14(4): 31-38.]

VENKATESH J, YU J, PARK SW, 2013. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins [J]. Plant Physiol Biochem, 73(6): 392-404.

VINNAKOTA R, RAMAKRISHNAN AM, SAMDANI A, et al, 2016. A comparison of aquaporin function in mediating stomatal aperture gating among drought-tolerant and sensitive varieties of rice (Oryza sativa L.) [J]. Protoplasma, 253(6): 1593-1597.

XIA ZL, LI JQ, LIU JJ, et al, 2013. Cloning of an aquaporin gene NtTIP1 from tobacco and its expression under drought stress [J]. J Henan Agric Univ, 47(5): 509-513. [夏宗良, 李军旗, 刘剑君, 等, 2013. 烟草水通道蛋白NtTIP1基因的克隆及其在干旱胁迫下的表达分析 [J]. 河南农业大学学报, 47(5): 509-513.]

YAARAN A, MOSHELION M, 2016. Role of aquaporins in a composite model of water transport in the leaf [J]. Int J Mol Sci, 17(7): 1045.

ZARGAR SM, NAGAR P, DESHMUKH R, et al, 2017. Aquaporins as potential drought tolerance inducing proteins: toward instigating stress tolerance [J]. J Proteomics: 233-238.

ZHI Z, YANG L, GONG J, et al, 2016. Genome-wide identification of Jatropha curcas aquaporin genes and the comparative analysis provides insights into the gene family expansion and evolution in Hevea brasiliensis [J]. Front Plant Sci, 7: 395.

ZHUANG L, LIU M, YUAN X, et al, 2015. Physiological effects of aquaporin in regulating drought tolerance through overexpressing of Festuca arundinacea aquaporin gene FaPIP2;1 [J]. J Am Soc Hortic Sci, 140(5): 404-412.

ZOU Z, GONG J, FENG A, et al, 2015. Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue [J]. BMC Genom, 16: 1001.

ZOU Z, GONG J, HUANG Q, et al, 2015. Gene structures, evolution, classification and expression profiles of the aquaporin gene family in castor bean (Ricinus communis L.) [J]. PLoS ONE, 10(10): e141022.

 
江林娟,陈春华,颜旭,杨世民
《广西植物》 2018年第05期
《广西植物》2018年第05期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号