更全的杂志信息网

棉秸秆锤片式粉碎机的设计及有限元分析

更新时间:2009-03-28

棉花秸秆是棉花的主要副产物。传统的棉花秸秆利用模式是直接粉碎还田,但棉花秸秆根部木质化较高,粉碎还田后不易腐烂,易导致播种效果不理想,甚至会产生土传病害。近年来,通过物理和生物方法对棉秆进行毒棉酚处理后,可以将其用作饲料。秸秆饲料必须经过粉碎环节。基于传统的锤片式粉碎机和揉切式粉碎机的结构,设计复合式锤片粉碎机,并对关键部转子进行有限元的静应力学与模态分析,验证方案的可行性。

1 锤片式粉碎机的结构及工作原理

棉秸秆粉碎机主要由机架、机壳、调心轴承、转子、联轴器、扭矩传感器、电机、皮带轮组成,如图1所示。物料输出采用负压式风机。

比较文学的理论和方法,新加坡学界其实并不陌生。早在1973年,本地学者王润华教授便已在南洋大学开设了“比较文学概论”和“西方汉学研究”的课程,向中文系学生介绍比较文学的学科理论和研究方法,进而引导学生将它们应用到中国文学的研究上。回顾这段教学经历,王润华教授有这样的描述:

  

图1 棉秸秆锤片式粉碎机示意图Figure 1 Schematic diagram of cotton straw hammer cr usher

棉秸秆粉碎机机壳与机架通过螺栓连接。带传动动力由电机提供。粉碎动力通过联轴器传递到转子的中心传动轴,带动转子旋转。物料由进料口进入粉碎室,经过转子的高速旋转,在锤片与齿板之间被击打敲碎并被锤片与定刀进一步切碎,接着在机壳内部左端风机产生的负压作用下通过粉碎室进入抛送室,最后由风机产生的气流将粉碎后的棉秸秆吹出。

2 锤片式粉碎机关键部件设计

2.1 中心传动轴转速确定

粉碎机的中心传动轴转速直接影响转子锤片的线速度。切割棉秸秆这种纤维饲料时,对锤片线速度有一定要求。查阅农业机械手册可知,粉碎棉秸秆的切割线速度取85 m/s。

由公式 v=ωr和 ω=2πn/60 可得,n=1 796 r/min。

因此,笔者认为农业科研项目绩效评价是指项目实施单位结合农业科研正外部性和公共性、阶段性和周期性、结果难以衡量性的特点,根据设定绩效目标,运用科学合理的绩效评价指标、评价标准和评价方法,对农业科研项目经费支出的经济性、效率性和效益性进行客观公正的评价。

转子材料采用45钢。该材料的基本属性为:密度7 800 kg/m3,泊松比 0.28,弹性模量 210 Gpa。 在轴B,C两轴肩处添加约束,施加的载荷在中心轴A处,施加的重力加速度为9.8 m/s2,该轴传递的扭矩为180 400 N·m,施加于转子左端轴颈处,如图5所示。

2.2 转子的设计

式中:Ymax为梁跨中的最大挠度,mm;p为各个集中荷载标准值之和,kN;E 为钢的弹性模量,E=2.1×106N/mm2;I为钢的截面惯矩。

尽管口算的难度会影响口算广度,但小学生口算广度的发展趋势较为一致,都是随着年级的增加而增大.其中,二年级口算广度增幅最大,进入三年级后,口算广度增幅较慢.这表明,二年级是小学生口算广度发展的关键期.在发展趋势方面,小学生的口算速度和口算广度在年级间都存在显著性差异,在性别间不存在统计学上显著性差异.因此,可认为口算速度和口算广度的发展存在较强的相关性,不仅发展趋势相同,发展关键期也类似.

2.3 机壳的设计

基于solidworks2015建立三维模型,将模型合理简化后导入ANSYS Workbench的相应模块中,然后使用自由化网格划分方法对转子三维模型进行网格划分,如图4所示。

  

图2 粉碎室转子结构示意图Figure 2 Structural diagram of smash roter

  

图3 下机壳结构示意图Figure 3 Structural diagram oflowchassis

2.4 粉碎机生产率及配套功率计算

根据载荷 P=1.47 KN,l=810 mm,I=πd4/64,(其中 d 为 50 mm),可求出 Ymax=0.013 mm,大于最大变形量0.008 5 mm,这表明设计的转子刚度能够满足设计要求。

 

式中:r为物料容重,秸秆容重 r=0.3;n 为转子转速,n=1 800 r/min;k 为物料形成环流层时的影响系数,取 k=0.6;k1为进料不均匀的影响系数,取 k1=0.8;k2为进料口对排料所产生的影响系数,取k2=0.7;D为转子直径,D=910 mm;B 为粉碎室宽度,B=300 mm。

由表3可知,FeCrBSi添加量为7%时试样发生变形,无法进行同一条件下标准的力学试验,其余不同添加量的试样指标均能满足304L不锈钢标准,烧结件的耐腐蚀性能也得到少许提升,但差异不大.当FeCrBSi添加量为3%时,试样的屈服强度、抗拉强度及断后伸长率均表现优异.

粉碎功率可由经验公式获得:

 

式中:C1为系数,范围为 6.4~10.5,取 C1=10;Q 为生产率。

伏尔加河下游1月气候,正是隆冬季节,寒风凛冽,阵阵劲吹,当旭日的阳光酒向大雪覆盖的伏尔加河草原时,皑皑的白雪射出耀眼夺目的光芒。就在此时,成千上万的土尔扈特妇孺老人乘上早已准备就绪的马车、骆驼和雪撬,在跃马横刀的骑士保护下,一队接着一队陆续出发,彻底离开了他们生活了将近一个半世纪的异乡。

将数值代入公式得:Q=2.8 t/h

经计算得N1=28 kW,据此选取的配套电机为Y200-L1-2,其额定功率为30 kW。

3 转子的有限元分析

3.1 建立模型及网格划分

机壳下壳体与上壳体的区别在于,下壳体增加一组定刀和物料挡板。整个机壳用螺栓安装齿板,如图3所示。物料挡板的作用是防止物料从进料口进入后未经粉碎直接进入抛送室。定刀的作用是增强粉碎强度。

所谓侦查成本,主要是指侦查机关和侦查人员在侦查过程中所投入的一切资源,包括侦查人员、侦查经费、侦查时间等。所谓效益,是指一个生产过程以最小的投入总成本生产出既定水平的产出,或一个生产过程使既定的投入组合可得到的产出水平达到最大。[12]在侦查中,效益则主要指的是侦查活动所实现的预期目标是否实现或实现的程度。以侦查成本与侦查效益来评价和衡量侦查决策时,无论是社会大众还是侦查人员都会追求两个准则:最小成本准则与最大效益准则。然而在实际评价时,则需要对成本和效益进行综合的考量。

  

图4 转子的网格划分模型Figure 4 Grid partition model of roter

3.2 转子的材料属性及边界条件

式中:v为棉秸秆粉碎锤片的线速度,m/s;ω为粉碎机转子的角速度,rad/s;r为粉碎室转子的半径,m。 中心传动轴的转速 n=1 800 r/min。

1.2.2 将治疗组于术后第一天服用消痈汤加减。具体方药如下:具体处方如下:金银花20 g,蒲公英30 g,紫花地丁25 g,连翘15 g,赤芍15 g,黄芪20 g,花粉15 g,牛膝15 g,乳香10g,没药10g g,皂刺10 g,生甘草6 g,汤汁200 mL,适温服之,100 mL/次,共2周。对照组不采用治疗,对照组给予消痈汤治疗。

  

图5 施加约束和载荷转子的模型Figure 5 Impose restriction and loading roter model

3.3 转子的静应力学分析

通过ANSYS Workbench静应力分析得到转子的变形云图和应力分布云图,其软件分析结果分别如图6、图7所示。

3.3.1 转子变形云图分析 由图6可见:转子的中间垂直方向发生明显变形,位移量为0.005 mm,最大位移量在风扇叶片上,为0.015 mm;转子的变形量由中间向两端逐渐变小。由于叶片的变形量是由转子中心轴引起的,所以转子中间的变形量最大(0.008 5 mm)。与转子的许用挠度进行比较,计算公式为:

 

棉秸秆粉碎机转子主要由中心传动轴、抛送风机、锤片、幅盘毂、锤架板、锤片组成,如图2所示。将粉碎室与抛送室结合成一体,不仅能实现粉碎抛送效果,还利用负压原理将物料输送到抛送室,减少粉碎流程。幅盘毂的主要作用是带动锤片转动切割,同时固定锤架板的轴向;锤架板除起到安装锤片的作用外,还给风机输送物料提供充足空间。使180 mmx50 mmx5 mm的矩形锤片在粉碎室呈空间螺旋线排布,相邻两锤片中心距为18 mm,共6组。这种螺旋线排布的锤片分布形式,有助于粉碎后物料的输送,能将运转后的锤片均匀分布在机壳内部,减少应力集中现象,增加粉碎机的使用寿命。

粉碎机的生产率无法直接精确计算,只能通过经验公式进行初步计算:

3.3.2 转子应力分布云图分析 由图7可见: 转子应力最大的位置分别为两端轴承处和轴中间位置。由于转子的应力变化范围在0.76~6.86Mpa范围之间,而45钢的最大许用应力为355 Mpa,远远大于转子的最大应力,能够满足转子的强度设计要求。

  

图6 转子变形云图Figure 6 Aberration nephogram of roter

  

图7 转子应力分布云图Figure 7 Stress distribution of roter

  

图8 转子的一阶固有频率Figure 8 First order natural frequency of roter

  

图9 转子的二阶固有频率Figure 9 Second order natural frequency of roter

3.4 转子的模态分析

转子模态分析的目的主要是研究转子是否出现共振。在ANSYS Workbench的静应力学分析基础上,进一步进行转子模态分析。

在转子转速为1 800 r/min时,其最大激振频率为30 Hz。判定转子是否会引起共振,只需研究其低阶模态的固有频率。提取转子的前2阶固有频率,如图8、图9所示。

分析结果表明,转子振动主要集中在中间粉碎室(包含锤片、锤架板和销轴)。第一阶模态的固有频率为 101.36 Hz, 第二阶模态的固有频率为 114.55 Hz。转子固有频率会随着模态阶数的增加而增大,但当转子转速接近甚至超过临界转速时,转子变形量会逐渐增加,影响转子稳定性。由于转子的第一阶模态固有频率为101.36 Hz,远远大于转子的最大激振频率30 Hz,因此转子不会发生共振,符合动态性能要求。

4 结论与讨论

锤片、齿板与定刀相结合的复合式锤片粉碎机,比传统秸秆粉碎机的粉碎粒度精细。关键部件转子的线速度选取85 m/s,锤片采用空间螺旋线排布形式。粉碎机的生产率可达到2.8 t/h,电机额定功率为30 kW。

从转子的静应力学和模态分析两个方面进行仿真。在静应力学分析中,通过转子的变形云图确定转子的刚度满足要求,通过转子的应力分布图确定转子的强度满足要求。在模态分析中,转子低阶模态的固有频率远大于转子的最大激振频率,确定转子结构的稳定性符合设计要求。

采用有限元对转子进行分析,不能完全模拟其实际工况,转子受到冲击载荷的情况也无法得到验证,因此在后续的工作中,有必要将这一部分考虑到相关分析中。

参考文献

[1]赵树琪,李蔚,戴宝生,等.棉花秸秆综合利用现状分析[J].湖北农业科学,2017,56(12):2 201-2 203.

[2]刘向阳,韩鲁佳,阎巧娟,等 9RZ-60 型秸秆揉切机性能的试验研究[J].中国农业大学学报,2003(4):27-29.

[3]徐清华.秸秆饲料复合化学调制效果研究[D].新疆:石河子大学,2014.

[4]王亚波.93FC56-66 饲草粉碎机的研究与试验[J].农村牧区机械化,2012(5):15-17.

[5]陈黎卿,王莉,张家启,等.适用于全喂入联合收割机 1JHSX-34 型秸秆粉碎机设计[J].农业工程学报,2011,27(9):28-32.

[6]王林军,曹慧萍.基于 ANSYS-Workbench 的转子模态分析[J].三峡大学学报(自然科学版),2014,36(6):89-93.

[7]王伟,刘飞,麻乾,赵满全.9R-40型揉碎机结构有限元分析——基于ANSYS Workbench[J].农机化研究,2016,38(11):46-49.

 
徐志强,郭辉,陈恒峰,高国民,孙延智
《农业科技与装备》 2018年第03期
《农业科技与装备》2018年第03期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号