更全的杂志信息网

Level of dietary energy and 2,4-thiazolidinedione alter molecular and systemic biomarkers of inflammation and liver function in Holstein cows

更新时间:2016-07-05

Background

Thiazolidinediones(TZD)are agonists of peroxisome proliferator-activated receptor gamma(PPARG)that elicit insulin-sensitizing effects in non-ruminants[1-3]and dairy cows[4-6].The administration of TZD(4 mg of TZD/kg of BW)during the late prepartum period appeared to alter the dynamics of plasma glucose,non-esterified fatty acids(NEFA),and hydroxybutyric acid(BHBA)concentrations and dry matter intake(DMI)during the periparturient period[5,7].Furthermore,a greater concentration of blood insulin was reported in TZD-treated cows,which likely accounted for the lower NEFA[6].

We previously reported that in dry and non-pregnant dairy cows fed a control lower-energy(CON)or higherenergy(OVE)diet receiving 4 mg of TZD/kg of BW daily for 2 wk[8]the concentrations of glucose(4.55 vs.4.65 mmol/L),insulin(27 vs.35 μU/mL),and(BHBA)(0.27 vs.0.37)were increased during the TZD administration(2 to 4 wk after diet initiation).In contrast,the concentration ofNEFA (0.18 vs.0.15 mmol/L)and adiponectin(ADIPOQ;34.6 vs.30.3 μg/L)remained unchanged during TZD administration.More importantly,the ratios of glucose/insulin(0.51 vs.0.54)and NEFA/insulin(0.22 vs.0.18)decreased during TZD,suggesting an improvement in insulin sensitivity.The mRNA expression in subcutaneous adipose tissue of PPARG and its targets FASN and SREBF1,which are the main regulators of adipogenesis and lipogenesis,were upregulated by TZD[8].Greater expression of the insulin sensitivity-related genes IRS1,SLC2A4,INSR,SCD,INSIG1,DGAT2,and ADIPOQ in subcutaneous adipose tissue of OVE cows indicated that greater energy intake did not impair insulin sensitivity.In skeletal muscle,TZD altered expression of carbohydrate-and fatty acid oxidation-related genes.The OVE cows had greater mRNA expression of PC and PCK1,which was indicative of increased glyceroneogenesis[8].

全面提升食品药品监管队伍业务能力素质。近3年来,通过统一招考,聘用了食品药品专业人员34名,监管人员专业化程度达到70%以上。通过集中培训使划转人员掌握监督检查的基本流程和工作标准,并通过在系统内调剂、调整专业人员,实现了人员与岗位的优化配置;班子成员与干部积极发挥传帮带作用,使基层监管人员能够稳住心、站住脚。

A comprehensive review on the topic insulin sensitivity in dairy cattle underscored the role of skeletal muscle,adipose tissue,and liver in the overall glucose and insulin relationship[9].The level of dietary energy fed prepartum has long been known to alter fat deposition and other metabolic pathways in tissues like liver[10].Cows suffering from fatty liver had higher serum concentrations of NEFA,greater serum TNF,and had signs of systemic insulin resistance[11].Some evidence indicates that excess NEFA concentrations alter hepatic function and inflammatory status[12,13].Importantly,the severity of inflammation around parturition seemsrelated to some inflammatory indices observed in the dry period[14].Thus,the available data seem to suggest that NEFA could cause inflammation and that inflammation also could cause the greater release of NEFA.

Our hypothesis was that overfeeding and TZD administration lead to changes in the dynamics of biomarkers of oxidative stress,inflammation,and metabolism in blood and liver tissue and might be related with systemic insulin sensitivity.To address the hypothesis,we measured in samples from Hosseini et al.[8]the plasma or serum concentrations of acute-phase proteins(haptoglobin,ceruloplasmin,albumin,cholesterol,and adiponectin),health and liver function biomarkers(total protein,myeloperoxidase,globulin,GGT,AST/GOT and total bilirubin),oxidative stress(paraoxonase and reactive oxygen metabolites(ROMt)),protein metabolism(urea),and vitamins(retinol,αtocopherol,beta-carotene).In addition,the mRNA expression of genes associated with glucose homeostasis and gluconeogenesis,lipid metabolism nuclear receptors and their targets,inflammation and ketogenesis was measured in liver tissue.

Methods

Experimental design,animals management and sampling

The ruminant liver is the main site for gluconeogenesis[16],and a spike of insulin into the bloodstream suppresses not only gluconeogenesis but also glycogenolysis and AT tissue lipolysis[9].In fact,elevated insulin concentrations can stimulate glycogenesis in liver and improve overallinsulin sensitivity viaglucose uptake in peripheral tissues such as AT and skeletal muscle[9].In humans with type 2 diabetes,the injection of TZD decreased hepatic fat content and increased hepatic insulin sensitivity along with increased glucose uptake by peripheral tissues[17].Thus,despite inherent differences in gastrointestinal tract anatomy,circulating insulin can alter insulin sensitivity in extrahepatic tissues in ruminants and non-ruminants.

设计意图:艺术家罗丹曾经说过:“换个角度看问题,生命会展现出另一种美。生活中不是缺少美,而是缺少发现。”本活动让学生领略到同样的事物关系经过不同的思维角度后呈现出不同的结果,巧妙的是最后生成的三座金字塔也是生态学上著名的数量、生物量、能量金字塔,这个发现不仅激发了学习的兴趣,也开拓了学生的眼界和思维。

Biopsies,RNA isolation,primer design and evaluation,and quantitative PCR

将五水硫酸铜和水按1:100的比例配制成1%的五水硫酸铜水溶液,充分搅拌,使之完全溶解后,用注射器针管抽取已配制好的1%的硫酸铜水溶液,按每只羊2 ml体重的剂量(一月龄以上的羊全部可以灌服)给全群羊逐只从口腔缓慢灌服,对以下三种情况均可以起到特效作用。

Liver tissue was harvested via percutaneous biopsy as described previously[15]before the morning feeding at 14 d,before TZD administration,21 and 28 d,during the TZD administration and 35 ds relative to diet initiation.Details of these procedures are reported in the supplemental material.Tissue was frozen immediately in liquid N until RNA extraction.The selection of the primers in liver was conducted base on core cellular functions,e.g.insulin signaling,glucose metabolism and synthesis,lipid metabolism,hepatokines,cytokines and inflammatory mediators(Additional file 1:Tables S1 and S2).The amplicons were sequenced and the fragment sequences were blasted and confirmed using the National Center for Biotechnology Information(NCBI).The sequences are shown in Additional file 1:Table S3.The geometric mean of internal control genes(ICG)GAPDH, ribosomal protein S9 (RPS9), and ubiquitously-expressed transcript(UXT)were used for data normalization(V2/3≤0.15)in liver tissue.qPCR perfromance is reported in Additional file 1:Table S4.

Statistical analysis

Data were analyzed with the Proc MIXED procedure of SAS 9.4 (SAS Institute Inc.,Cary,NC).After normalization with the geometric mean of the ICG,the triplicate qPCR data for each gene were averaged and then log2transformed prior to statistical analysis.Fixed effects in the model were diet,time,and diet×time.Cow within diet was designated as the random effect.Initial BW and BCS were included as covariates in the analysis for all variables,except when the covariate was not significant(P>0.05).Blood metabolites were logscale transformed if needed to comply with normal distribution of residuals,and means subsequently were back-transformed.Significance was declared at P≤0.05,while trend was declared at P≤0.10.

螺钉断裂者,如骨折愈合可行内固定取出;如骨折未愈合而无明显不适可佩戴胸腰背支具外固定至骨折愈合;如存在胸腰背部疼痛不适,应行开放手术翻修并增加伤椎固定。

Results

Results related to NELintake,BW,blood TZD as well as blood levels of BHBA,NEFA,glucose,insulin,adiponectin were reported previously[8].

ACD:Citric acid and dextrose;DIM:Days in milk;DMI:Dry matter intake;IACUC:Institutional animal care and use committee;PPAR:Peroxisome proliferator-activated receptors;ROMt:Reactive oxygen metabolites

此外,基于PoW的共识机制还面临多种攻击,包括:自私挖矿[13]、扣块攻 击(BWH)[14]、扣 块 后 分 叉 攻 击(FAW)[15],利用区块链产生分叉的特点,制定利己的区块发布策略,获得高于自身实际算力的高额回报;日蚀攻击[16]、延时攻击[17],以及网络隔离攻击[18],通过劫持网络流量或其他方法,将区块链中网络节点的117个信息输入通道控制或是将其与其他网络节点隔离,使其只能接收到敌手发送的信息,在此基础上发动女巫攻击、双花攻击[19]、分布式拒绝服务攻击(DDoS)等。

Blood biomarkers before TZD administration

The OVE cows had lower(P≤0.05)concentration over time of total protein,urea,and albumin(Fig.1).The overall concentration of cholesterol and tocopherol increased(P<0.05)at 14 d after diet initiation,whereas the serum concentration of total bilirubin tended(P=0.10)to decrease at 14 d after diet initiation(Table 1).Prior to TZD,diet did not affect(P>0.05)cholesterol,total bilirubin,or tocopherol.Serum concentrations of glucose, ceruloplasmin,ROMt,GGT,retinol,AST/GOT,paraoxonase,globulin,myeloperoxidase,haptoglobin,and beta-carotene also were not affected(P>0.05,data not shown)by diet,time(14 wk)or their interaction.

Fig.1 Temporal concentrations[-7 to 14 d relative to diet initiation;before TZD administration and 15 to 28 d relative to diet initiation(during TZD administration)]of blood biomarkers in cows fed either a controlled-energy diet(CON,1.30 Mcal/kg diet dry matter;n=7)or a moderate-energy diet(OVE,1.60 Mcal/kg diet dry matter;n=7)before(left panels)and during(right panels)2,4-thiazolidinedione(TZD)administration.*Significant(P<0.05)difference due to diet or Diet×Time.a,bSignificant(P<0.05)overall difference due to time

Table 1 Plasma concentrations of biomarkers from-7 to 14 d relative to diet initiation,before 2,4-thiazolidinedione(TZD)administration and 15 to 28 d relative to diet initiation and during TZD administration in cows fed either a controlled-energy diet(CON,1.30 Mcal/kg;n=7)or a moderate-energy diet(OVE,1.60 Mcal/kg;n=7)

a,bMeans within a row with different superscripts differ(P≤0.05)for TZD,whilec,ddenote trends(P≤0.10)

Item Diet Day P-value CON OVE SEM -7 0 7 14 SEM Diet Day Before TZD - - - -Metabolism Cholesterol,mmol/L 2.64 2.68 0.15 2.62a 2.54a 2.64a 2.84b 0.11 0.86  <0.01 Liver function Total Bilirubin,μU/mL 1.18 1.06 0.10 1.19c 1.09d 1.11c 1.08d 0.09 0.14 0.10 Antioxidants-anti-inflammation α-Tocopherol,mmol/L 5.22 5.28 0.46 5.19a 5.02a 5.13a 5.65b 0.34 0.94  <0.01 Item Diet Day P-value CON OVE SEM 15 20 25 28 SEM Diet TZD During TZD + + + +Health and liver function GGT,U/L 22.7 21.3 2.8 21.3c 22.2cd 21.6cd 22.9d 2.1 0.53 0.07 Globulin,g/L 43.6b 38.8a 1.0 39.8a 42.0b 41.5b 41.5b 1.0 0.03 0.02 Myeloperoxidase,U/L 491b 419a 21.5 399a 474b 484b 462b 24.1 0.03 0.05 Total Protein,g/L 78.7b 73.0a 1.2 74.1a 77.2b 76.0b 76.2b 1.0  <0.01 0.021 Total Bilirubin,μmol/L 1.19d 1.03c 0.11 1.48 1.39 1.39 1.37 0.42 0.06 0.97 Acute-phase proteins Ceruloplasmin,μmol/L 3.30 3.14 0.11 2.95a 3.30b 3.30b 3.34b 0.10 0.33  < 0.01 Haptoglobin,g/L 0.65b 0.51a 0.05 0.62a 0.57a,b 0.61a 0.51b 0.068  <0.01 0.05 Oxidative stress ROMt,mg H2O2/100 mL 13.8 13.4 0.57 12.1a 14.0b 14.1b 14.2b 0.51 0.62  <0.01 Paraoxonase,U/mL 113b 91.4a 6.4 100 104 99.8 105 5.14 0.03 0.15 Liver injury AST/GOT,U/L 66.0a 77.6b 3.6 67.8 72.8 75.8 70.8 3.3 0.04 0.16 Antioxidants-anti-inflammation Retinol,μg/100 mL 37.8c 47.6d 3.7 42.6 43.5 42.9 41.8 2.77 0.09 0.56

Blood biomarkers and hormones during TZD administration

进一步推广新技术、新工艺、新材料的应用.要加强燃气工程的功能分析,改进施工技术,不断采用新技术、新工艺,提高燃气工程的使用寿命;要加强对工程材料的性能分析,及时推广应用降耗增效的新材料,以降低工程成本.

The Fig.1 and Table 1 contain the main effects of diet,TZD,and interactions for plasma parameters.Although plasma cholesterol did not differ statistically prior to TZD(Table 1),during TZD there was greater(interaction P<0.05)concentration of cholesterol and tocopherol in cows fed OVE(Fig.1).Regardless of diet,the TZD increased(P<0.05)GGT,ceruloplasmin,and ROMt concentrations at d 28 from diet initiation(Table 1).An interaction during TZD was detected for concentrations of globulin,myeloperoxidase,total protein,and haptoglobin due to lower overall concentrations in cows fed OVE.Independent of TZD,the concentrations oftotalbilirubin and paraoxonase were lower and AST/GOT greater in cows fed OVE(Table 1).No effect of diet,TZD or their interaction(P>0.05)was detected for urea and albumin concentrations(Fig.1).

Gene expression in response to level of diet and TZD

Fig.2 Expression of genes associated with gluconeogenesis(PC),lipid metabolism nuclear receptors(PPARA),ketogenesis(HMGCS2),hepatokines(ANGPTL4 and FGF21),and inflammation(TNF)in liver tissue of cows fed either a controlled-energy diet(CON,1.30 Mcal/kg diet dry matter;n=7)or a moderate-energy diet(OVE,1.60 Mcal/kg diet dry matter;n=7)before and during 2,4-thiazolidinedione(TZD)administration.The dotted line denotes the start of TZD infusion on d 15 relative to diet initiation.*Significant(P<0.05)difference due to diet or Diet×Time.a,bSignificant(P<0.05)overall difference due to time

Paraoxonase is considered an antioxidative stress enzyme and a negAPP that binds to plasma apolipoproteins[26].An antioxidative function of paraoxonase has been suggested in dairy cows[27],as well as a link with the dynamics of positive acute-phase proteins(posAPP)and negAPP around parturition[12].In humans,the serum paraoxonase activity is reduced by oxidized low density lipoprotein(LDL)and is maintained or increased by antioxidants [28].Reactive oxygen metabolites(ROMt)are considered useful biomarkers of oxidative stress;the results of an in vivo study in mice and an in vitro study in human hepatocyte cell cultures revealed that concentrations of ROMt can be increased by feeding high-carbohydrate diets[29].Those studies revealed that the increase in ROMt decreased the capacity of hepatocytes to respond to an oxidative challenge.In our study,the lower concentration of paraoxonase coupled with greater cholesterol in OVE cows indicated a reduction in the ability of the liver to synthesize this enzyme.In fact,work with dairy cows has revealed a positive relationship between increases in plasma cholesterol and paraoxonase,which underscores the idea that liver function in OVE cows experienced a negative effect for some functional aspects.

Discussion

TheInstitutionalAnimalCareandUseCommittee(IACUC)of the University of Illinois approved all procedures for this study(protocol#12134).Detailed materials and methods can be found elsewhere[8].In brief,fourteen dry non-pregnant Holstein cows[initial BW(kg)=717±39;initial BCS=3.31±0.14]were assigned randomly to treatment groups.Cows were offered the TMR once daily at 0600 h and had unlimited access to fresh water.All cows were fed a control diet(CON;NEL=1.30 Mcal/kg)to meet 100%of NRC requirements for 3 wk,after which half of the cows were assigned to a moderate-energy diet(OVE;NEL=1.60 Mcal/kg)and half of the cows continued on CON for 6 wk.The OVE diet was fed ad libitum and resulted in cows consuming~180%of NRC.Control cows were fed to consume only 100%of NRC.All cows received an intravenous injection of 4 mg TZD/kg of BW daily after the morning feeding into the jugular vein starting d 15 after the initiation of dietary treatments and until d 28.Blood samples were collected before the morning feeding from the coccygeal vein or artery every 5±2 ds from-7 to 14 d of diet initiation(before TZD administration)and from 15 to 28 d of diet initiation(during TZD administration)for measurement of metabolites and hormones.

Table 2 Relative mRNA expression of target genes in liver tissue at 14 to 28 d relative to diet initiation and after a 7-day washout period(35 d)in cows fed a controlled-energy diet(CON,1.30 Mcal/kg;n=7)or a moderate-energy diet(OVE,1.60 Mcal/kg;n=7).All cows received an intravenous injection of 2,4-thiazolidinedione(TZD)(+)for 2 wk after biopsy collection at 14 d after initiation of dietary treatments,with the additional 2 wk of study serving as a washout period

a,bMeans within a row with different superscripts differ(P≤0.05)due to diet or TZD cTissue sample not available

Gene Diet Day P-value CON OVE SEM 14 21 28 35 SEM Diet TZD TZD - + + -IRS1 1.03 1.02 0.03 1.04a 0.99b 1.03a -c 0.029 0.77 0.04 INSR 1.12b 1.02a 0.05 1.06a 1.04a 1.11b - 0.04 0.02 0.03 ACOX1 1.03b 0.96a 0.02 1.01 0.98 1.00 - 0.02  <0.01 0.16 PPARD 1.07b 0.99a 0.04 1.04 1.01 1.03 - 0.03 0.01 0.21

Besides its effect on insulin sensitivity,previous data from non-ruminants also indicated that TZD changes the dynamics of blood biomarkers,e.g.adiponectin,insulin and glucose.Similarly,in dairy cows the administration of TZD(4 mg of TZD/kg of BW)during the late-prepartum period altered the dynamics of plasma glucose,NEFA,BHBA concentrations and also DMI during the periparturient period.The TZD helped cows to maintain BCS postpartum[5,7]and achieve greater concentrations of insulin[6],which likely accounted for the lower NEFA,i.e.the drug probably induced greater insulin sensitivity in peripheral tissues such as AT.In the present study the TZD administration increased triacylglycerol concentration and altered expression of carbohydrate-and fatty acid oxidation-related genes in skeletal muscle[8].Furthermore,the upregulation of PPARG with the TZD injection provided evidence that TZD could enhance adipogenesis and lipogenesis in SAT,while differentially regulating glucose homeostasis and fatty acid oxidation in skeletal muscle[8].

⑨约翰·卡西迪:《马克思的回归》,童建挺译,载俞可平编《全球化时代的“马克思主义”》,中央编译出版社1998年版,第4页。

Diet,TZD and blood biomarkers

Overfeeding energy intake and hepatic function

汉文学-讲师为三岛毅。轮流阅读《左传》、《荀子》、《扬子》、《法言》(译者按:《东洋大学百年史》所作“《扬子》、《法言》”应作“《扬子法言》”)等。

In addition to its well-described role as a negative acute-phase protein(negAPP),the rate of albumin synthesis is affected by feed intake[20-22],i.e.greater concentrations are correlated with higher energy intake but in the absence of differences in energy intake a lower concentration is indicative of altered liver function.The difference between the total protein and albumin content in plasma provides an estimate of globulin concentration[13].The dynamics of the change in globulin concentration is considered an index of immunoglobulin production[12].Thus,as indicated by the present data,the mild decrease in total protein and albumin concentrations in OVE despite the greater DMI[8]is suggestive of a possible impairment in synthesis at the liver level brought about by a mild inflammation.However,the more pronounced decrease globulin seems to argue against inflammation playing a role.These results are in accordance with some previous studies in energy-overfed dairy cows[18].Whether excess energy intake caused a mild chronic degree of inflammation[23]remains to be determined.

The sustained decrease in plasma concentrations of cholesterol before calving and the weak increase after calving have been associated with an inflammatory-like status[12,13],but also reflect the pattern of DMI,i.e.gradual decrease through calving followed by a gradual increase.Clearly,the response in the present study could not be compared with the periparturient period where negative energy balance is a consequence of higher energy requirements for milk production rather and lower DMI.Thus,the greater blood concentration of cholesterol in OVE cows is likely a reflection of the greater DMI,i.e.cholesterol synthesized by the intestine[24].A review of the literature[25]concluded that inflammation could alter lipid transport in the circulation through changes in the dynamics of apolipoproteins.

The Fig.2 and Table 2 contain the main effects of diet,TZD,and interactionsforgenesrelated to insulin signaling,glucose metabolism,fatty acid oxidation,hepatokines,ketogenesis and inflammation.Prior to and during TZD,the expression of ACOX1 and PPARD was lower(P<0.05)in cows fed OVE(Table 2).In OVE cows,the mRNA expression of PC,FGF21,and INSR was lower(P<0.05),while the mRNA expression of HMGCS2 was greater(P<0.05)during TZD(Fig.2 and Table 2).Regardless of diet,the TZD administration increased(P<0.05)the mRNA of IRS1 and TNF at 28 d after diet initiation(Fig.2 and Table 2).

2)点、线、面的投影部分。由于点的投影是线的投影的基础,而线的投影又是面的投影的基础,故点的投影设置三个学习任务,线的投影设置两个学习任务,面的投影设置一个学习任务。点的投影的学习任务的知识点分别是点的三视图投影、点的投影特性、点的位置关系判断。线的投影的学习任务的知识点分别是线的投影及辅助线的使用、线的位置关系判断及辅助线的使用。面的投影的学习任务是面的投影及辅助线的使用。

The liver produces the major portion of the systemic haptoglobin in mammals,but in humans its concentration has been used as a marker for adiposity[30].In bovine,however,haptoglobin is a major posAPP and its concentration in plasma is increased during inflammation,infection,and often during the transition period[31].Despite the marked increased in energy intake,the lower concentration of haptoglobin in OVE cows likely reflects a lower inflammatory and oxidative stress response.

Regardless of TZD,the overall blood concentrations of cholesterol,albumin,and total protein were within a nonpathologic range[32].Along with the lower concentration of paraoxonase,haptoglobin,and myeloperoxidase,the greater concentrations of cholesterol in OVE cows indicated the absence of important impairment of the synthesis and release of the lipoproteins,and also of a severe acute-phase reaction in the liver.Furthermore,the lower bilirubin in OVE cows indicated normal hepatic bilirubin clearance capacity and agrees with the lower inflammatory status[32].Despite all the positive systemic signs in OVE cows,they had greater concentration of AST/GOT,which in clinical studies is an indicator of liver tissue damage[33].However,the concentration of AST/GOT can be affected by catabolism of nutrients such as amino acids via the citric acid cycle[34].Thus,the greater AST/GOT in OVE cows might be related not only to “leakage”from liver cells but also to greater citric acid cycle flux,e.g.to produce glucose,as a result of the greater DMI and the greater absorption of amino acids from the gut.

The greater blood concentrations of α-tocopherol,retinol,and beta-carotene in OVE cows is suggestive of adequate or better vitamin status,and these molecules have been linked with the immune response.Betacarotene and α-tocopherol are antioxidants that bind free radicals to prevent lipid peroxidation and improve the immune response[35,36].Retinol(vitamin A)circulates in the blood bound to retinol-binding protein(RBP),a protein that is synthesized in the liver and controls availability of the vitamin in times of insufficient dietary intake[37].Inhibition of RBP transcription or function is one determinant of circulating levels of retinol.Similar to retinol,the liver is considered the“master regulator”of systemic vitamin E availability,i.e.it controls disposition,metabolism,and excretion[38].In the context of lipoprotein metabolism,re-packing of α-tocopherol into the very-low density lipoproteins is central for extra-hepatic availability.Thus,hepatic metabolism of cholesterol and lipoproteins clearly has direct bearing on systemic α-tocopherol concentrations.In the context of insulin sensitivity,the greater overall concentration of retinol in cows fed OVE could have had an effect on peripheral insulin sensitivity as demonstrated recently[39].These relationships likely explain the greater α-tocopherol concentration in OVE cows which also had greater cholesterol concentration(i.e.an index of lipoprotein synthesis).Besides dietary availability,in non-ruminants,the acute-phase response causes a decrease in the hepatic synthesis of vitamin A and of α-tocopherol namely due to alterations in hepatic function [40]. Clearly, the greater blood concentration of these vitamins especially retinol in OVE cows was in part due to the greater DMI and diet composition,and the resulting storage of these vitamins is not expected to impair liver function[41].

TZD,insulin sensitizing effect versus Hepatotoxicity

Historically,TZD has been used over the last two decades to improve insulin sensitivity in type II diabetic subjects.The results of in vivo and in vitro studies[42,43]indicated that Troglitazone(TGZ),a thiazolidinedione,caused hepatotoxicity through non-metabolic and metabolic factors[44].Some of the present data could reflect a mild hepatotoxic effect of the short-term TZD administration.For instance,in addition to the decrease in the negAPP(e.g.cholesterol),there seems to have been differential regulation of the posAPP by TZD,e.g.ceruloplasmin increased and haptoglobin decreased.Results from a previous study revealed that TZD can decrease haptoglobin expression in adipocytes in vitro and in vivo[45].Because the cows were clinically healthy during the study,it is also possible that the greater concentration of ceruloplasmin after TZD regardless of diet was associated with a stressful effect also reflected by the gradual increase in ROMt withTZD regardless of diet.

There is evidence from rats[46]and humans[47]that the family of TZD compounds might cause oxidative stress and elicit a direct effect on mitochondrial physiology,hence,playing a role in TZD-mediated hepatotoxicity.In our study,the administration of TZD increased ROMt concomitantly with GGT,AST/GOT,myeloperoxidase,globulin and total protein.A study in mice reported that insulin-sensitizing compounds may act as antioxidants while increasing oxidative stress in the liver[42].A recent study detected an increase in the synthesis of liver enzymes such as AST and ALT in Chinese subjects with type II diabetic using 4 mg of a TZD-like compound for three month.The mechanistic reasons for elevated liver enzymes upon TZD treatment remain to be determined.

The blood concentration of cholesterol has been used as an indicator of lipoprotein metabolism and is linked to the quantity of lipid mobilized and re-esterified as VLDL within the intestine and liver[32].In the present study,the greater cholesterol concentration during TZD might indicate the increased export of VLDL to peripheral tissues such as adipose and skeletal muscle.We speculate that such response would have provided insulin-sensitive tissues with fatty acids for esterification,an idea supported by the greater concentration of triacylglycerol that was detected in muscle during TZD injection[8].Similar to cholesterol,it is possible that the greater concentration of α-tocopherol is a reflection of an increase in VLDL export from the liver[48]to peripheral tissues during the TZD injection period.

TZD modulates hepatic metabolic pathways via PPARA and its targets

The state of systemic insulin sensitivity or glucose tolerance can be estimated using the euglycemic clamp[49]and glucose tolerance tests[4].In our study,the OVE cows had a greater overall concentration of insulin[8],thus,the lower hepatic expression of INSR in the liver was somewhat expected [50].Although it is wellestablished that the ruminant liver is not a net user of glucose,our results of insulin signaling-related genes are in accordance with previous results in rodents.For instance,a hyperinsulinemic state in obese mice led to a decrease in insulin binding and phosphorylation of the insulin receptor and the kinase IRS-1 in liver[51].The data seem to agree with studies in sheep demonstrating differences in the binding of insulin to receptors in liver as a function of circulating concentration[50].Furthermore,our data indicate that TZD could increase insulin sensitivity and signaling in cow liver[52].

Comprehensive reviews of available data have concluded that PPARα is the main regulator of hepatic fatty acid oxidation,ketogenesis,triglyceride turnover,and gluconeogenesis in non-ruminants and likely in ruminants[53,54].For example,the results of studies with PPARA knockout mice and bovine cells provided strong evidence that gluconeogenesis and glycerol metabolism are directly controlled by PPARA[55]via its targets PC and PCK1[56,57].The temporal profile of PC in the present study seems to suggest the existence of an alternate mechanism whereby insulin sensitizers(over the long-term)could affect hepatic gluconeogenesis differently in response to dietary energy level,i.e.overfeeding moderate energy diets over a period of weeks seems to render the liver less responsive to TZD while feeding to meet energy requirements cannot prevent the expected negative effect of TZD on insulin sensitivity[58].The exact mechanisms for the TZD effect merit further study.

1.1 一般资料 选取淮安市第一人民医院2015年6月至2017年10月收治的132例房颤患者为研究对象,按照随机数字表法分为地高辛组及观察组,每组各66例。地高辛组:男性34例,女性32例;平均年龄(58.27±12.05)岁;心功能Ⅰ级17例,Ⅱ级29例,Ⅲ级20例。观察组:男性37例,女性29例;平均年龄(57.91±13.02)岁;心功能Ⅰ级19例,Ⅱ级30例,Ⅲ级17例。两组患者一般资料比较,差异无统计学意义(P>0.05),具有可比性。本研究经医院伦理委员会批准。患者均签署知情同意书。

In ruminants,there is indirect evidence that long-chain fatty acids(LCFA)can activate hepatic β-oxidation via PPARA and its downstream co-activators to decrease tissue TAG accumulation[53].ACOX1 is one of the PPARA targets which is involved in peroxisomal fatty acid oxidation in non-ruminants;it is the first enzyme in peroxisomal LCFA oxidation[59,60].A lower ACOX1 expression in OVE cows could be explained by the lower plasma NEFA compared with CON cows.In the present study,the different regulation of mRNA expression of proximal and outermitochondrial β-oxidation enzymes by TZD administration might have been related with the fact that this compound binds to mitochondrial membrane proteins to modulate mitochondrial metabolism[61].

Research in non-ruminants has demonstrated that ANGPTL4[62]and FGF21[63,64]are the targets of PPARA,and are considered hepatokines,i.e.proteins secreted from liver that can regulate tissue adaptations to feed restriction[65,66].A study with mouse primary hepatocytes underscored the negative effect of insulin on mRNA expression of ANGPTL4[67].In rodents,fasting and starvation activated ANGPTL4 in aPPARA-dependent manner[68];the study of Loor et al.[65]uncovered a potential link between PPARA and ANGPTL4 in cows during nutrition-induced ketosis.ANGPTL4 is an endogenous inhibitor of lipoprotein lipase(LPL)that regulates peripheral tissue uptake of plasma TAG-derived fatty acids[69],hence,helping to regulate energy homeostasis.

In vitro studies in rodents have revealed that PPAR agonists such as TZD are potent inducers of FGF21[70].In diabetic rodents and monkey,FGF21 is considered an effective metabolic regulator of glucose and lipid homeostasis in the context of insulin resistance,glucose intolerance and dyslipidemia[68].Additional studies indicated an increase in plasma concentration and expression of FGF21 during the transition period[66].

In the present study,the lower expression of ANGPTL4 and FGF21 in OVE agrees with the fact they were in positive energy balance.Furthermore,a lower FGF21 expression would be expected in OVE cows because they had higher blood insulin concentration[8].The upregulation of FGF21 mRNA expression at two weeks.After TZD administration agrees with a mouse study in which the TZD induced the expression of this gene[70].Our data indicate that bovine PPARA is TZD responsive,and may participate in the regulation of hepatic insulin sensitivity and energy expenditure via its targets.The lower PPARD mRNA expression in OVE cows might be related to the lower plasma NEFA concentration;in an in vitro study with rodents,an upregulation of PPARD was determined to be important in order to“sense”concentrations of LCFA as a way to control mitochondrial oxidation in order to protect against fatty acid-induced cellular dysfunction.

The HMGCS2 enzyme is rate-limiting for the production of ketone bodies in liver and the neonatal intestine[71].In growing ruminants,the mRNA expression of HMGCS2 also is associated with ketogenesis in ruminal epithelium,a process that helps the rumen develop[72].Studies with rodents uncovered that the expression of HMGCS2 is regulated by PPARA or by conditions that enhance LCFA influx into the liver(e.g.feed restriction)[73].In contrast,insulin signaling in liver is a negative regulator of HMGCS2 expression and activity.Thus,in the present study the greater mRNA expression of HMGCS2 in OVE cows might have been linked with a lower plasma insulin concentration.In contrast,the gradual downregulation of HMGCS2 expression during the TZD injection period could have been associated with an insulin-sensitizing effect.

Conclusions

Despite a marked increase in energy balance status in OVE cows in response to overfeeding energy there were modest alterations in the acute-phase response,but it should be kept in mind that the linear decrease in albumin from day 0 to 14 is an indication of a gradual impairment of some liver functions.Based on molecular and blood data it seems that administration of TZD enhanced some aspects of insulin sensitivity while causing contradictory results in terms of inflammation and oxidative stress.Overall,data indicated that bovine liver is TZD responsive and level of dietary energy can modify the effects of TZD.Because insulin sensitizers have been proposed as useful tools to manage dairy cows during the transition period,further studies are required to investigate the potential hepatotoxicity effect of TZD(or similar compounds)in dairy cattle.

Additional file

Additional file 1:Table S1.GenBank accession number,sequence and amplicon size of primers used to analyze gene expression by quantitative PCR.Table S2 Gene symbol,gene name,and description of the main biological function and biological processes of the targets analyzed in subcutaneous adipose tissue and muscle.Table S3 Sequencing results obtained from PCR product.Table S4 qPCR performance among the genes measured in adipose tissue and muscle.(DOCX 197 kb)

Abbreviations

1)在第g代,求出适应值排在种群规模前1/3的个体,记为优异个体,并得到优异个体每一维变量取值范围,记为

Acknowledgements

Funding

The lower blood concentration of urea in OVE cows was in accordance with previous results[18].A better liver function status in OVE cows is supported by the lower total bilirubin[12,13].In addition,the hyperinsulinemia in OVE cows[8]along with lower urea concentration also might be related to increased gluconeogenesis in liver along with amino acid uptake and protein synthesis in skeletal muscle[19].

Not applicable.

Availability of data and materials

The datasets during and/or analyzed during the current study are available from the corresponding author on reasonable request.

教学中,教师可基于摩尔根的果蝇杂交实验,引导学生来判断基因位于Y染色体的非同源区段、X染色体上的非同源区段、XY染色体的同源区段上,以此加深学生对所学知识的深入理解。

Authors’contributions

AH,MS,ZZ,and ET performed analyses and analyzed data.JJL and JKD conceived the animal experiment.AH and JJL wrote the manuscript.All authors approved the final version of the manuscript.

Ethics approval and consent to participate

All procedures for this study(protocol no.12134)were approved by the Institutional Animal Care and Use Committee of the University of Illinois.

Consent for publication

为进一步提高《右江民族医学院学报》办刊质量,加快审稿速度,缩短稿件刊用周期,提高审稿质量和效率,进一步提升学报的学术影响力,经本刊编委会研究决定,拟组建一支充满活力的青年编委队伍,诚邀在医学相关专业领域内有一定学术影响力和研究成果的青年专家、学者加入青年编委会团队,凡符合以下条件的专家、学者均可报名。

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Animal Sciences and Division of Nutritional Sciences,University of Illinois,1207 West Gregory Drive,Urbana,IL 61801,USA.

2Department of Animal Nutrition and Nutritional Diseases,University of Ondokuz Mayıs,55139 Samsun,Turkey.3Istituto di Zootecnica,Facoltà di Scienze Agrarie Alimentari ed Ambientali,Università Cattolica del Sacro Cuore,29122 Piacenza,Italy.

References

1. Ahmadian M,Suh JM,Hah N,Liddle C,Atkins AR,Downes M,et al.PPARgamma signaling and metabolism:the good,the bad and the future.Nat Med.2013;19(5):557-66.

2. Jonas D,Van Scoyoc E,Gerrald K,Wines R,Amick H,Triplette M,et al.in Drug Class Review:Newer Diabetes Medications,TZDs,and Combinations.Final Original Report.2011.Oregon Health&Science University,Portland(OR).

3. Ye J.Challenges in drug discovery for Thiazolidinedione substitute.Acta Pharmaceutica Sinica B.2011;1(3):137-42.

4. Schoenberg KM,Overton TR.Effects of plane of nutrition and 2,4-thiazolidinedione on insulin responses and adipose tissue gene expression in dairy cattle during late gestation.J Dairy Sci.2011;94(12):6021-35.

5. Smith KL,Butler WR,Overton TR.Effects of prepartum 2,4-thiazolidinedione on metabolism and performance in transition dairy cows.J Dairy Sci.2009;92(8):3623-33.

6. Smith KL,Stebulis SE,Waldron MR,Overton TR.Prepartum 2,4-thiazolidinedione alters metabolic dynamics and dry matter intake of dairy cows.J Dairy Sci.2007;90(8):3660-70.

7. Schoenberg KM,Perfield KL,Farney JK,Bradford BJ,Boisclair YR,Overton TR.Effects of prepartum 2,4-thiazolidinedione on insulin sensitivity,plasma concentrations of tumor necrosis factor-alpha and leptin,and adipose tissue gene expression.J Dairy Sci.2011;94(11):5523-32.

8. Hosseini A,Tariq MR,Trindade da Rosa F,Kesser J,Iqbal Z,Mora O,et al.Insulin sensitivity in adipose and skeletal muscle tissue of dairy cows in response to dietary energy level and 2,4-Thiazolidinedione(TZD).PLoS One.2015;10(11):e0142633.

9. De Koster JD,Opsomer G.Insulin resistance in dairy cows.Vet Clin North Am Food Anim Pract.2013;29(2):299-322.

10.Khan MJ,Jacometo CB,Graugnard DE,Corrêa MN,Schmitt E,Cardoso F,et al.Overfeeding dairy cattle during late-pregnancy alters hepatic PPARalpharegulated pathways including Hepatokines:impact on metabolism and peripheral insulin sensitivity.Gene Regul Syst Bio.2014;8:97-111.

11.Ohtsuka H,Koiwa M,Hatsugaya A,Kudo K,Hoshi F,Itoh N,et al.Relationship between serum TNF activity and insulin resistance in dairy cows affected with naturally occurring fatty liver.J Vet Med Sci.2001;63(9):1021-5.

12.Bionaz M,Trevisi E,Calamari L,Librandi F,Ferrari A,Bertoni G.Plasma paraoxonase,health,inflammatory conditions,and liver function in transition dairy cows.J Dairy Sci.2007;90(4):1740-50.

13.Bertoni G,Trevisi E,Han X,Bionaz M.Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows.J Dairy Sci.2008;91(9):3300-10.

14.Trevisi E,Zecconi A,Bertoni G,Piccinini R.Blood and milk immune and inflammatory profiles in periparturient dairy cows showing a different liver activity index.J Dairy Res.2010;77(3):310-7.

15.Dann HM,Litherland NB,Underwood JP,Bionaz M,D'Angelo A,McFadden JW,et al.Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows.J Dairy Sci.2006;89(9):3563-77.

16.Bas P.Changes in activities of lipogenic enzymes in adipose tissue and liver of growing goats.J Anim Sci.1992;70(12):3857-66.

17.Chang E,Park CY,Park SW.Role of thiazolidinediones,insulin sensitizers,in non-alcoholic fatty liver disease.J Diabetes Investig.2013;4(6):517-24.

18.Graugnard DE,Bionaz M,Trevisi E,Moyes KM,Salak-Johnson JL,Wallace RL,et al.Blood immunometabolic indices and polymorphonuclear neutrophil function in peripartum dairy cows are altered by level of dietary energy prepartum.J Dairy Sci.2012;95(4):1749-58.

19.Bolster DR,Jefferson LS,Kimball SR.Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-,amino acid-and exercise-induced signalling.Proc Nutr Soc.2004;63(2):351-6.

20.Kirsch R,Frith L,Black E,Hoffenberg R.Regulation of albumin synthesis and catabolism by alteration of dietary protein.Nature.1968;217(5128):578-9.

21.Nicholson JP,Wolmarans MR,Park GR.The role of albumin in critical illness.Br J Anaesth.2000;85(4):599-610.

22.Lunn PG,Austin S.Dietary manipulation of plasma albumin concentration.J Nutr.1983;113(9):1791-802.

23.De Matteis L,Bertoni G,Lombardelli R,Wellnitz O,Van Dorland HA,Vernay MCMB,et al.Acute phase response in lactating dairy cows during hyperinsulinemic hypoglycaemic and hyperinsulinemic euglycaemic clamps and after intramammary LPS challenge.J Anim Physiol Anim Nutr(Berl).2017;101(3):511-20.

24.Duske K,Hammon HM,Langhof AK,Bellmann O,Losand B,Nürnberg K,et al.Metabolism and lactation performance in dairy cows fed a diet containing rumen-protected fat during the last twelve weeks of gestation.J Dairy Sci.2009;92(4):1670-84.

25.Katoh N.Relevance of apolipoproteins in the development of fatty liver and fatty liver-related peripartum diseases in dairy cows.J Vet Med Sci.2002;64(4):293-307.

26.Mackness B,Durrington PN,Mackness MI.Human serum paraoxonase.Gen Pharmacol.1998;31(3):329-36.

27.Turk R,Juretić D,Geres D,Svetina A,Turk N,Flegar-Mestrić Z.Influence of oxidative stress and metabolic adaptation on PON1 activity and MDA level in transition dairy cows.Anim Reprod Sci.2008;108(1-2):98-106.

28.Aviram M,Rosenblat M,Billecke S,Erogul J,Sorenson R,Bisgaier CL,et al.Human serum paraoxonase(PON 1)is inactivated by oxidized low density lipoprotein and preserved by antioxidants.Free Radic Biol Med.1999;26(7-8):892-904.

29.Collison KS,Saleh SM,Bakheet RH,Al-Rabiah RK,Inglis AL,Makhoul NJ,et al.Diabetes of the liver:the link between nonalcoholic fatty liver disease and HFCS-55.Obesity(Silver Spring).2009;17(11):2003-13.

30.Chiellini C,Santini F,Marsili A,Berti P,Bertacca A,Pelosini C,et al.Serum haptoglobin:a novel marker of adiposity in humans.J Clin Endocrinol Metab.2004;89(6):2678-83.

31.Ceciliani F,Ceron JJ,Eckersall PD,Sauerwein H.Acute phase proteins in ruminants.J Proteome.2012;75(14):4207-31.

32.Bertoni G,Trevisi E.Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds.Vet Clin North Am Food Anim Pract.2013;29(2):413-31.

33.Kaneko JJ,Harvey JW,Bruss ML.Clinical biochemistry of domestic animals.Fifth ed.London:Academic Press Limited;1997.

34.Giannini EG,Testa R,Savarino V.Liver enzyme alteration:a guide for clinicians.CMAJ.2005;172(3):367-79.

35.Bendich A.Physiological role of antioxidants in the immune system.J Dairy Sci.1993;76(9):2789-94.

36.LeBlanc SJ,Herdt TH,Seymour WM,Duffield TF,Leslie KE.Peripartum serum vitamin E,retinol,and beta-carotene in dairy cattle and their associations with disease.J Dairy Sci.2004;87(3):609-19.

37.Noy N.Vitamin a in regulation of insulin responsiveness:mini review.Proc Nutr Soc.2016;75(2):212-5.

38.Traber MG.Vitamin E regulatory mechanisms.Annu Rev Nutr.2007;27:347-62.

39.Berry DC,Noy N.Signaling by vitamin a and retinol-binding protein in regulation of insulin responses and lipid homeostasis.Biochim Biophys Acta.2012;1821(1):168-7.

40.Gruys E,Toussaint MJ,Niewold TA,Koopmans SJ.Acute phase reaction and acute phase proteins.J Zhejiang Univ Sci B.2005;6(11):1045-56.

41.Wolf G.Multiple functions of vitamin a.Physiol Rev.1984;64(3):873-937.

42.Kassahun K,Pearson PG,Tang W,McIntosh I,Leung K,Elmore C,et al.Studies on the metabolism of Troglitazone to reactive intermediates in vitro and in vivo.Evidence for novel biotransformation pathways involving Quinone Methide formation and Thiazolidinedione ring scission.Chem Res in Toxicol.2001;14(1):62-70.

43.Hu D,Wu CQ,Li ZJ,Liu Y,Fan X,Wang QJ,et al.Characterizing the mechanism of thiazolidinedione-induced hepatotoxicity:an in vitro model in mitochondria.Toxicol Appl Pharmacol.2015;284(2):134-41.

44.Masubuchi Y.Metabolic and non-metabolic factors determining Troglitazone Hepatotoxicity:a review.Drug Metab Pharmacokinet.2006;21(5):347-56.

45.Vernochet C,Davis KE,Scherer PE,Farmer SR.Mechanisms regulating repression of haptoglobin production by peroxisome proliferatoractivated receptor-gamma ligands in adipocytes.Endocrinology.2010;151(2):586-94.

46.Narayanan PK,Hart T,Elcock F,Zhang C,Hahn L,McFarland D,et al.Troglitazone-induced intracellular oxidative stress in rat hepatoma cells:a flow cytometric assessment.Cytometry A.2003;52(1):28-35.

47.Garcia-Ruiz I,Rodríguez-Juan C,Díaz-Sanjuán T,Martínez MA,Muñoz-Yagüe T,Solís-Herruzo JA.Effects of rosiglitazone on the liver histology and mitochondrial function in ob/ob mice.Hepatology.2007;46(2):414-23.

48.Cohn W,Loechleiter F,Weber F.Alpha-tocopherol is secreted from rat liver in very low density lipoproteins.J Lipid Res.1988;29(10):1359-66.

49.Petterson JA,Dunshea FR,Ehrhardt RA,Bell AW.Pregnancy and undernutrition alter glucose metabolic responses to insulin in sheep.J Nutr.1993;123(7):1286-95.

50.Gill RD,Hart IC.Properties of insulin and glucagon receptors on sheep hepatocytes:a comparison of hormone binding and plasma hormones and metabolites in lactating and non-lactating ewes.J Endocrinol.1980;84(2):237-47.

51.Saad MJ,Saad MJ,Araki E,Miralpeix M,Rothenberg PL,White MF,et al.Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance.J Clin Invest.1992;90(5):1839-49.

52.Smith DH,Palmquist DL,Schanbacher FL.Characterization of insulin binding to bovine liver and mammary microsomes.Comp Biochem Physiol A Comp Physiol.1986;85(1):161-9.

53.Bionaz M,Chen S,Khan MJ,Loor JJ.Functional role of PPARs in ruminants:potential targets for fine-tuning metabolism during growth and lactation.PPAR Res.2013;2013:684159.

54.Kersten S.Integrated physiology and systems biology of PPARalpha.Mol Metab.2014;3(4):354-71.

55.Rakhshandehroo M,Sanderson LM,Matilainen M,Stienstra R,Carlberg C,de et al.Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling.PPAR Res.2007;2007:26839.

56.Patsouris D,Mandard S,Voshol PJ,Escher P,Tan NS,Havekes LM,et al.PPARalpha governs glycerol metabolism.J Clin Invest.2004;114(1):94-103.

57.White HM,Koser SL,Donkin SS.Differential regulation of bovine pyruvate carboxylase promoters by fatty acids and peroxisome proliferator-activated receptor-alpha agonist.J Dairy Sci.2011;94(7):3428-36.

58.Way JM,Harrington WW,Brown KK,Gottschalk WK,Sundseth SS,Mansfield TA,et al.Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues.Endocrinology.2001;142(3):1269-77.

59.Dreyer C,Krey G,Keller H,Givel F,Helftenbein G,Wahli W.Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors.Cell.1992;68(5):879-87.

60.Tugwood JD,Issemann I,Anderson RG,Bundell KR,McPheat WL,Green S.The mouse peroxisome proliferator activated receptor recognizes a response element in the 5′flanking sequence of the rat acyl CoA oxidase gene.EMBO J.1992;11(2):433-9.

61.Colca JR,McDonald WG,Waldon DJ,Leone JW,Lull JM,Bannow CA,et al.Identification of a novel mitochondrial protein(“mitoNEET”)cross-linked specifically by a thiazolidinedione photoprobe.Am J Physiol Endocrinol Metab.2004;286(2):E252-60.

62.Kersten S.Regulation of lipid metabolism via angiopoietin-like proteins.Biochem Soc Trans.2005;33(Pt 5):1059-62.

63.Kharitonenkov A,Shiyanova TL,Koester A,Ford AM,Micanovic R,Galbreath EJ,et al.FGF-21 as a novel metabolic regulator.J Clin Invest.2005;115(6):1627-35.

64.Hondares E,Rosell M,Gonzalez FJ,Giralt M,Iglesias R,Villarroya F.Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat.Cell Metab.2010;11(3):206-12.

65.Loor JJ,Everts RE,Bionaz M,Dann HM,Morin DE,Oliveira R,et al.Nutritioninduced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows.Physiol Genomics.2007;32(1):105-16.

66.Schoenberg KM,Giesy SL,Harvatine KJ,Waldron MR,Cheng C,Kharitonenkov A,et al.Plasma FGF21 is elevated by the intense lipid mobilization of lactation.Endocrinology.2011;152(12):4652-61.

67.Kuo T,Chen TC,Yan S,Foo F,Ching C,McQueen A,et al.Repression of glucocorticoid-stimulated angiopoietin-like 4 gene transcription by insulin.J Lipid Res.2014;55(5):919-28.

68.Ryden M.Fibroblast growth factor 21:an overview from a clinical perspective.Cell Mol Life Sci.2009;66(13):2067-73.

69.Mattijssen F,Kersten S.Regulation of triglyceride metabolism by Angiopoietinlike proteins.Biochim Biophys Acta.2012;1821(5):782-9.

70.Oishi K,Tomita T.Thiazolidinediones are potent inducers of fibroblast growth factor 21 expression in the liver.Biol Pharm Bull.2011;34(7):1120-1.

71.Hegardt FG.Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase:a control enzyme in ketogenesis.Biochem J.1999;338(Pt 3):569-82.

72.Connor EE,Li RW,Baldwin RL,Li C.Gene expression in the digestive tissues of ruminants and their relationships with feeding and digestive processes.Animal.2010;4(7):993-1007.

73.Meertens LM,Miyata KS,Cechetto JD,Rachubinski RA.Capone JPA mitochondrial ketogenic enzyme regulates its gene expression by association with the nuclear hormone receptor PPARalpha.EMBO J.1998;17(23):6972-8.

Afshin Hosseini,Mustafa Salman,Zheng Zhou,James K. Drackley,Erminio Trevisi,Juan J. Loor
《Journal of Animal Science and Biotechnology》2018年第1期文献
Candidate genes for male and female reproductive traits in Canchim beef cattle 作者:Marcos Eli Buzanskas,Daniela do Amaral Grossi,Ricardo Vieira Ventura,Flavio Schramm Schenkel,Tatiane Cristina Seleguim Chud,Nedenia Bonvino Stafuzza,Luciana Diniz Rola,Sarah Laguna Conceição Meirelles,Fabiana Barichello Mokry,Maurício de Alvarenga Mudadu,Roberto Hiroshi Higa,Marcos Vinícius Gualberto Barbosa da Silva,Maurício Mello de Alencar,Luciana Correia de Almeida Regitano,Danísio Prado Munari5

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号