更全的杂志信息网

转录因子PAX4调控湖羊FSHR基因转录活性

更新时间:2016-07-05

促卵泡素受体(Follicle stimulating hormone receptor,FSHR)是雌性哺乳动物卵巢颗粒细胞膜上一种重要的受体蛋白,其编码基因是影响哺乳动物多胎性状的主效基因,调控卵巢颗粒细胞状态(增殖和凋亡)、卵泡发育和排卵[1-2]。促卵泡素(Follicle stimulating hormone,FSH)信号转导必须通过与卵巢颗粒细胞膜上的受体FSHR结合才能作用于卵巢,从而促进卵泡发育、调控配子形成[3],因此FSHR是母畜生殖必需的。研究发现猪卵泡成熟与排卵依赖FSHR基因的表达[4],其基因编码区上3个 碱基突变(c.74C>G、c.532G>A和c.1166T>C)显著影响猪排卵数,FSHR被认为是影响猪繁殖性状的主效基因[1]。在绵羊中,FSHR基因在卵巢组织不同大小(直径4~7 mm)和不同状态(优势卵泡、劣势卵泡和黄体化卵泡)的卵泡中均差异表达[5],说明FSHR基因表达水平与绵羊卵泡发育、优势化和排卵有关。FSHR基因5′-调控区和编码区SNP位点(g.-414G>A、g.-200G>A、g.-197G>A、g.-98T>C、g.-47C > T和c.1235T>C)的多态性均与绵羊多胎性状(产羔数)显著关联[6-9]。因此,FSHR是影响绵羊多胎性状的重要候选基因。

湖羊是中国著名的多胎绵羊品种,其多胎机制一直是湖羊特色性状研究和应用的热点[6, 10-12]FSHR基因SNP位点多态性与湖羊多胎性状之间关系密切[13],是影响湖羊多胎性状的候选基因。在高繁殖力绵羊个体卵巢卵泡中,FSHR基因转录水平显著高于低繁殖力个体[5,14],可见卵泡中FSHR基因表达水平与绵羊繁殖力有关。但目前关于绵羊FSHR基因转录调控的研究较少,特别是转录因子的调控还未见报道。本研究拟以湖羊FSHR基因为研究对象,克隆湖羊FSHR基因5′-UTR序列,了解其序列特征(如转录调控元件和转录因子结合位点),分析湖羊转录因子PAX4基因的组织表达特征和在卵巢颗粒细胞凋亡中的作用,以及对湖羊FSHR基因转录活性的影响,以期揭示湖羊FSHR基因的转录调控机制和湖羊多胎分子机制。

1 材料与方法

1.1 试验动物

成年湖羊母羊(n=3)心、肝、脾、肺、肾、胃、肌肉、大肠、小肠、子宫和卵巢11种组织样采自苏州种羊场,置于液氮中保存,用于提取DNA和RNA。

另一个显著的问题是主张保护传统村落的团体与寻求生活条件改善的村内人的冲突问题。这个问题似乎已经演变成了一个悖论,即保护传统村落的原真性势必要求保留原貌,而原有的条件却不能满足使用者的要求,例如,建筑保暖采光差,无法摆置现代家具,不便于现代交通工具进出。

1.2 核酸提取

采用酚/氯仿法提取湖羊卵巢组织DNA。采用Trizol(Invitrogen公司)法提取湖羊各组织和卵巢颗粒细胞总RNA,并利用快速反转录试剂盒(TaKaRa公司)反转录成cDNA。DNA和cDNA均在-20 ℃冰箱中保存备用。

1.3 克隆测序

湖羊FSHR基因5′-UTR序列全长161 bp(图2)。序列分析发现,湖羊FSHR基因5′-UTR序列中A、T、C和G等4种碱基的含量分别是32.30%、16.77%、21.74%和29.19%,其中A+T含量(49.07%)接近C+G含量(50.93%)。同源性比对发现,湖羊FSHR基因5′-UTR序列与特塞尔(Texel)绵羊序列(GenBank序列号:NC_019460.1)一致,与牛(GenBank序列号:AC_000168.1)、小鼠(GenBank序列号:NC_000083.6)和斑马鱼(GenBank序列号:NC_007123.7)的一致性分别为95.03%、61.11%和28.90%,可见FSHR基因5′-UTR核苷酸序列在哺乳动物中较为保守。通过序列比对发现,在湖羊FSHR基因5′-UTR区含有多个转录调控元件,如E-box、CAAT-box和GC-box等(图2)。采用在线软件Genomatic对湖羊FSHR基因5′-UTR序列进行转录因子结合位点预测,结果显示,在湖羊FSHR基因5′-UTR序列含有GATA-2、SOX3、IRF-1、Sp1、E4FUSF1和SOX10转录因子结合位点(图2)。采用在线软件Methprimer在湖羊FSHR基因5′-UTR中未检测到CpG岛,但发现多个CpG位点。

1.4 序列分析

式中,0<α<2为特征指数,δ>0为离差,类似于方差,-1<β<1为对称参数,-∞<μ<∞为位置参数,sign(·)为符号函数。当β=0时,此分布被称为对称Alpha稳定(SαS)分布,当且仅当随机变量X1和X2为联合SαS分布时,复随机变量X=X1+jX2服从SαS分布。当α=2时Alpha稳定分布退化为高斯分布,但随着α的减小,分布的非高斯性变得明显,其拖尾越长。对于第2节中所给实测数据直方图,采用Alpha稳定分布进行拟合,可得α取1.3,如图4中实线所示,拟合效果明显优于瑞利分布。

1.5 组织表达谱

本研究合成了湖羊PAX4基因过表达载体(pcDNA3.1-PAX4)。pcDNA3.1-PAX4载体经双酶切(图4A)和直接测序鉴定正确后,瞬时转染体外培养的卵巢颗粒细胞,qRT-PCR检测发现,PAX4过表达组(即转染pcDNA3.1-PAX4)卵巢颗粒细胞中PAX4基因mRNA表达水平极显著高于对照组(P<0.01)(图4B),说明构建的湖羊PAX4基因过表达质粒pcDNA3.1-PAX4可在卵巢颗粒细胞中高效表达,符合试验要求。流式细胞术检测发现,PAX4过表达组卵巢颗粒细胞凋亡率显著高于对照组(P<0.05)(图5),说明PAX4可促进卵巢颗粒细胞凋亡,是一个促凋亡转录因子。

1.6 载体构建

商品猪卵巢采自南京天环屠宰场,用于抽取卵巢颗粒细胞。猪卵巢颗粒细胞培养、转染和荧光素酶活性分析的具体方法见文献[2]。

压实膨润土混合物自由膨胀-收缩、限制膨胀-收缩过程的特征点见表4和表5。其中, 收缩量是指膨胀稳定与收缩稳定之间体积的变化率差值。

1.7 细胞培养、转染和荧光素酶活性分析

湖羊PAX4基因过表达载体pcDNA3.1-PAX4由南京伯津公司合成,采用双酶切鉴定法和直接测序进行确认。以P4(表1)为引物扩增湖羊FSHR基因5′-UTR,用限制性内切酶Kpn I和Hind Ⅲ酶切后,克隆到pGL3双荧光素酶报告基因载体(Promega公司)中,并转染感受态细胞DH5α(天根公司),采用双酶切鉴定法和直接测序进行确认,构建湖羊FSHR基因5′-UTR荧光素酶报告基因重组质粒。

1.8 qRT-PCR

数据用“平均数±标准误”表示,采用SPSS v18.0软件对数据进行统计分析。P<0.05表示差异显著;P<0.01表示差异极显著。

表1 引物信息 Table 1 The primers in this study

引物名称Primer name基因Genes引物序列(5′-3′) Primer sequences退火温度/℃Annealing temperature产物长度/bpProduct size用途UsageP1FSHRF:ATGTGACAGAGGGTGGGATAGR:CATCCACCTGCTTGCTTCT557305′-UTR克隆P2PAX4F:CCAGGAATCTTCTCTGCACAGTR:AAGGGCAAGGATGGCAAAG55206qRT-PCRP3GAPDHF:ACTTTGGCATCGTGGAGGR:GAAGAGTGAGTGTCGCTGTTG55379qRT-PCRP4FSHRF:CGGGGTACC ATGTGACAGAGGGTGGGATAGR:CCCAAGCTT CATCCACCTGCTTGCTTCT55748载体构建

1.9 数据分析

pcDNA3.1-PAX4转染体外培养的卵巢颗粒细胞,48 h后收集细胞,提取细胞总RNA,并反转录成cDNA。卵巢颗粒细胞中PAX4基因表达水平采用qRT-PCR技术进行检测,具体步骤见文献[11],退火温度见表1。

由回归结果 (表略)可以看出,解释变量cyc、dem、goi和sca均在1%水平下显著,模型拟合效果良好。经济周期波动、市场需求以及企业规模的系数为正,表明对炼化产业的产能利用率具有正向作用;政府干预系数为负,表明对炼化产业的产能利用率具有负向作用,与理论相符。

2 结 果

2.1 湖羊FSHR基因5′调控区克隆

以湖羊卵巢组织基因组DNA为模板,利用引物P1进行PCR扩增,PCR产物电泳结果见图1。从图1可以看出,电泳条带单一明亮。测序发现,扩增片段长度为730 bp,与引物源序列(GenBank序列号:NC_019460.1)的一致性为98.99%。

M.DL2000 marker;1~2.PCR扩增产物 M.DL2000 marker; 1-2.PCR product 图1 湖羊FSHR基因5′调控区扩增产物电泳图 Fig.1 Agarose gel photograph of FSHR 5′ regulatory region in Hu sheep

2.2 湖羊FSHR基因5′-UTR序列分析

以绵羊FSHR基因序列(GenBank序列号:NC_019460.1)为参考序列,设计引物P1用于扩增湖羊FSHR基因5′-UTR序列,引物信息和扩增条件见表1。PCR产物用1.5%琼脂糖凝胶电泳进行分离,并采用胶回收试剂盒(Axygen公司)进行回收。回收产物与载体pMD19-T(TaKaRa公司)连接后,转化到感受态细胞DH5α(天根公司)中;挑取阳性克隆,采用质粒提取试剂盒(Axygen公司)提取质粒,由上海生物工程公司进行双向测序。

采用DNAMAN v5.2.2软件进行序列整理和比对分析;采用在线程序Genomatix(https://www.genomatix.de)进行转录调控元件和转录因子结合位点预测;采用在线软件Methprimer(http://www.urogene.org)预测CpG岛。

*表示转录起始位点; 黑体字母表示USF1结合位点;虚线表示起始密码子 * indicate transcription start site. Black letters indicate binding site for USF1;Dashed line indicate start codon 图2 湖羊FSHR基因5′-UTR序列与特塞尔绵羊、牛同源性比对 Fig.2 Alignment of FSHR 5′-UTR sequence in Hu sheep with Texel sheep and cattle

2.3 湖羊PAX4基因组织表达谱分析

PAX4(Paired box 4)是一种重要的转录因子,主要通过与靶基因调控区结合调控基因转录[15],但关于其调控FSHR基因转录和在卵巢中作用的研究还未见报道。本研究首先以湖羊心、肝、脾、肺、肾、胃、肌肉、大肠、小肠、子宫和卵巢11种组织cDNA为模板,采用RT-PCR技术检测各组织中PAX4基因表达情况,结果见图3。从图3中可以看出,PAX4基因在湖羊11种组织中均有表达,其中在小肠组织表达量最高,在心和肝等组织高表达,在心、肝、肺、胃、肾、子宫和卵巢等组织中等表达,而在脾、肌肉和大肠等组织中低表达,可见PAX4是一个卵巢组织表达基因。

2.4 湖羊PAX4在卵巢颗粒细胞凋亡中的作用

以湖羊11个组织cDNA为模板,以P2(表1)为引物进行RT-PCR扩增。扩增产物用1.5%琼脂糖凝胶电泳进行分离,用Tanon-3500凝胶成像系统拍照。以GAPDH为内参基因,采用Quantity One v4.52软件对目的基因和内参基因进行灰度分析,用目的基因/内参基因计算不同组织目的基因的相对表达量。

M.DL100 marker;1~11.心、肝、脾、肺、肾、胃、肌肉、大肠、小肠、子宫和卵巢 M.DL100 marker; 1-11. Heart, liver, spleen, lung, kidney, stomach, muscle, rectum, intestinal, uterus and ovary 图3 湖羊PAX4基因组织表达谱 Fig.3 The mRNA expression profile of PAX4 gene in various tissues of Hu sheep

A.pcDNA3.1-PAX4载体的酶切鉴定;B. pcDNA3.1-PAX4载体转染后PAX4基因表达。M.DL5000 marker;1.pcDNA3.1载体;2.pcDNA3.1-PAX4载体。**.P<0.01 A.The digested results of pcDNA3.1-PAX4 vector;B.The expression of PAX4 in granulosa cells transfected with pcDNA3.1-PAX4 vector. M.DL5000 marker;1.pcDNA3.1 vector; 2.The restructuring pcDNA3.1-PAX4 vector. **.P<0.01 图4 湖羊PAX4基因过表达载体在卵巢颗粒细胞中的表达 Fig.4 The expression of Hu sheep pcDNA3.1-PAX4 vector in ovarian granulosa cells

A、B. 流式细胞术检测pcDNA3.1和pcDNA3.1-PAX4转染后颗粒细胞凋亡;C.凋亡率分析。*. P<0.05 A,B.Flow cytometry was performed to detect cell apoptosis in GCs transfected with pcDNA3.1 and pcDNA3.1-PAX4;C.Apoptosis rate analysis. *. P<0.05 图5 湖羊PAX4在卵巢颗粒细胞凋亡中的作用 Fig.5 The role of Hu sheep PAX4 in ovarian granulosa cell apoptosis

2.5 PAX4对湖羊FSHR基因转录活性的影响

本研究构建了包含PAX4结合位点(CAGGATTG)的湖羊FSHR基因5′-UTR的双荧光素酶报告载体pGL3-730(图6A)。将湖羊PAX4基因过表达载体pcDNA3.1-PAX4与FSHR基因5′-UTR双荧光素酶报告载体pGL3-730共转体外培养的卵巢颗粒细胞,收集细胞检测荧光素酶活性,结果见图6B。从图6B中可以看出,转染pcDNA3.1-PAX4后,卵巢颗粒细胞中pGL3-730载体的荧光素酶活性显著低于对照组(P<0.05)。同样地,转染pcDNA3.1-PAX4后,COS-7细胞中pGL3-730载体的荧光素酶活性极显著低于对照组(P<0.01)(图6C)。结果说明转录因子PAX4可下调湖羊FSHR基因5′-UTR活性,即抑制FSHR基因的转录活性。

A.pGL3-730载体的酶切鉴定: M.DL2000 marker;1~3.pGL3-730酶切产物。B.过表达PAX4对卵巢颗粒细胞中pGL3-730活性的影响;C.过表达PAX4对COS-7细胞中pGL3-730活性的影响。*.P<0.05;**.P<0.01 A.The digested results of pGL3-730 vector:M.DL2000 marker;1-3.The restructuring pGL3-730 vector.B. Overexpression of PAX4 influences luciferase activity of pGL3-730 vector in granulosa cells; C.Overexpression of PAX4 influences luciferase activity of pGL3-730 vector in COS-7 cells.*.P<0.05;**.P<0.01 图6 PAX4对湖羊FSHR基因转录活性的影响 Fig.6 The effect of PAX4 on the transcriptional activity of FSHR gene in Hu sheep

3 讨 论

FSH是促进哺乳动物卵巢卵泡生长、发育、分化和成熟的关键激素,但其生物学功能的发挥必须通过与其靶细胞膜上的受体蛋白(FSHR)结合才能传导信号进入靶细胞内[16],因此FSHR水平的高低决定了FSH对靶细胞的作用效果,以及响应的生物学特征[17]。研究发现FSHR基因转录调控的研究主要在5′调控区,其中人、模式动物(如小鼠)和主要家畜(如猪、牛)等哺乳动物FSHR基因5′-UTR和核心启动子区均已被成功鉴定,5′调控区结构和序列特征也进行了深入的研究[18-21]。在绵羊中,早在1997年就已鉴定出其FSHR基因的5′-UTR[22],其核心启动子区也于2001年被发现[23]。另外,国内著名地方绵羊品种湖羊FSHR基因核心启动子区的鉴定工作也于2014年完成[9],但目前关于绵羊特别是湖羊FSHR基因5′-UTR特征的研究相对较少。本研究通过克隆测序获得了湖羊FSHR基因5′-UTR序列,并发现其包含多个已知的转录调控元件,如E-box、CAAT-box和GC-box等。E-box是目前研究最多的FSHR基因5′-UTR 的转录调控元件,在人、大鼠和绵羊等物种中已证实E-box元件可招募大量同源结合因子、上游刺激因子USF1与USF2,调控FSHR基因的转录活性[20]。I.Teino等[24]发现,AHR可通过E-box元件调控小鼠卵巢中FSHR基因的转录活性。另外,CAAT-box可能是RNA聚合酶II(RNA polymerase II,Pol II)特异性结合的DNA序列元件,控制基因转录的正确起始和频率[25-26],而GC-box一般位于CAAT-box两侧,是转录因子Sp1结合区域,可激活基因转录[27-28],但目前关于这2个转录调控元件调控FSHR基因转录的研究还未见报道。湖羊FSHR基因5′-UTR序列中多个转录调控元件的发现,为进一步研究湖羊卵巢组织中FSHR基因的转录调控奠定了基础。

转录因子是一类具有特定功能的蛋白,主要通过与靶基因5′调控区上相应的结合位点组合在一起形成顺式调控模块,共同调控靶基因转录。目前已鉴定的FSHR基因的转录调控因子主要包括转录因子如GATA-1[29]、E2F[29]、GATA-4[30]、GATA-6[30]、AR[31]、DAX-1[31]、OCT-1[32]、FOXL2[33] 和YY1[9]等,和表观遗传因子如组蛋白去乙酰化酶MAT2[34]、miR-143[6] 和miR-126*[35]等,其中通过作用于5′调控区对FSHR基因进行转录调控的主要还是转录因子。本研究在湖羊FSHR基因5′-UTR序列中预测到多个转录因子结合位点,如GATA-2、SOX3、IRF-1、Sp1、E4F、USF1和SOX10等,其中USF1[20]和GATA家族[32]已被证实可调控哺乳动物FSHR基因转录。PAX4是已知的促进哺乳动物胚胎期内分泌腺体发育的关键转录因子[15],但目前关于其在卵巢中的作用及对FSHR基因进行转录调控的研究还未见报道。本研究结果发现,PAX4可促进卵巢颗粒细胞凋亡,是一个促凋亡因子,这与FSHR在卵巢颗粒细胞中的作用正好相反[2]。进一步研究发现,PAX4可抑制湖羊FSHR基因转录活性,这与PAX4、FSHR在卵巢颗粒细胞中的作用[2]是一致的,说明PAX4是湖羊FSHR基因的功能性转录因子。

4 结 论

本研究克隆了湖羊FSHR基因5′-UTR序列,了解了5′-UTR序列特征(如转录调控元件和转录因子结合位点)。转录因子PAX4在湖羊卵巢组织中表达,可促进卵巢颗粒细胞凋亡。荧光素酶活性分析发现,PAX4可抑制湖羊FSHR基因转录活性,是湖羊FSHR基因的抑制性转录因子。

半个小时后,他邀请她过来吃饭,两菜一汤,两人面对面坐着,窗外的夜色渐渐压下来,头顶暖橘色的光打下来,她吃得很矜持的样子,每一粒米饭都嚼出了甜味。再看老何,他竟比初见时好看了几分。

参考文献(References):

[1] SATO S, HAYASHI T, KOBAYASHI E. Fine mapping the number of corpora lutea quantitative trait loci on SSC3: Analysis of the porcine follicle-stimulating hormone receptor gene[J]. Anim Sci J, 2011, 82(5): 633-641.

[2] DU X, ZHANG L F, LI X Y, et al. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis[J]. Cell Death Dis, 2016, 7(11): e2476.

[3] LPEZ-DOVAL S, SALGADO R, LAFUENTE A. The expression of several reproductive hormone receptors can be modified by perfluorooctane sulfonate (PFOS) in adult male rats[J]. Chemosphere, 2016, 155: 488-497.

[4] CAI L P, SUN A D, LI H, et al. Molecular mechanisms of enhancing porcine granulosa cell proliferation and function by treatment in vitro with anti-inhibin alpha subunit antibody[J]. Reprod Biol Endocrinol, 2015, 13: 26

[5] REGAN S L, MCFARLANE J R, O’SHEA T, et al. Flow cytometric analysis of FSHR, BMRR1B, LHR and apoptosis in granulosa cells and ovulation rate in Merino sheep[J]. Reproduction, 2015, 150(2): 151-163.

[6] PAN X Y, LIU S J, LI F D, et al. Molecular characterization, expression profiles of the ovine FSHR gene and its association with litter size[J]. Mol Biol Rep, 2014, 41(12): 7749-7754.

[7] CHU M X, GUO X H, FENG C J, et al. Polymorphism of 5′ regulatory region of ovine FSHR gene and its association with litter size in Small Tail Han sheep[J]. Mol Biol Rep, 2012, 39(4): 3721-3725.

[8] 王金鑫. 不同繁殖力绵羊FSHR基因结构和表达的差异研究[D]. 北京: 中国农业科学院, 2013.

WANG J X. Study on differences of FSHR gene structure and expression in sheep with different fecundity[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)

[9] 郭 晶. 湖羊FSHRTGF-β1基因核心启动子区鉴定与表达调控[D]. 南京: 南京农业大学, 2014.

GUO J. Identification and regulation of the FSHR and TGF-β1 gene core promoter region in Hu sheep[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese)

[10] CHU M X, ZHUANG H B, ZHANG Y J, et al. Polymorphism of inhibin βB gene and its relationship with litter size in sheep[J]. Anim Sci J, 2011, 82(1): 57-61.

[11] 郭 晶, 李新宇, 李隐侠, 等. 湖羊TGF-β1基因特征、表达及其与排卵数的相关性分析[J]. 中国农业科学, 2013, 46(21): 4586-4593.

GUO J, LI X Y, LI Y X, et al. Characterization, expression of TGF-β1 gene and its association with ovulation rate in Hu sheep[J]. Scientia Agricultura Sinica, 2013, 46(21): 4586-4593. (in Chinese)

[12] HU X J, POKHAREL K, PEIPPO J, et al. Identification and characterization of miRNAs in the ovaries of a highly prolific sheep breed[J]. Anim Genet, 2016, 47(2): 234-239.

[13] WANG W M, LIU S J, LI F D, et al. Polymorphisms of the ovine BMPR-IB, BMP-15 and FSHR and their associations with litter size in two Chinese indigenous sheep breeds[J]. Int J Mol Sci, 2015, 16(5): 11385-11397.

[14] GOYAL S, AGGARWAL J, DUBEY P K, et al. Expression analysis of genes associated with prolificacy in FecB carrier and noncarrier Indian sheep[J]. Anim Biotechnol, 2017, 28(3): 220-227.

[15] VOLODIN A, KOSTI I, GOLDBERG A L, et al. Myofibril breakdown during atrophy is a delayed response requiring the transcription factor PAX4 and desmin depolymerization[J]. Proc Natl Acad Sci U S A, 2017, 114(8): E1375-E1384.

[16] ILGAZ N S, AYDOS O S, KARADAG A, et al. Impact of follicle-stimulating hormone receptor variants in female infertility[J]. J Assist Reprod Genet, 2015, 32(11): 1659-1668.

[17] BRAMBLE M S, GOLDSTEIN E H, LIPSON A, et al. A novel follicle-stimulating hormone receptor mutation causing primary ovarian failure: A fertility application of whole exome sequencing[J]. Hum Reprod, 2016, 31(4): 905-914.

[18] GROMOLL J, DANKBAR B, GUDERMANN T. Characterization of the 5′ flanking region of the human follicle-stimulating hormone receptor gene[J]. Mol Cell Endocrinol, 1994, 102(1-2): 93-102.

[19] LEVALLET J, KOSKIMIES P, RAHMAN N, et al. The promoter of murine follicle-stimulating hormone receptor: Functional characterization and regulation by transcription factor steroidogenic factor 1[J]. Mol Endocrinol, 2001, 15(1): 80-92.

[20] GEORGE J W, DILLE E A, HECKERT L L. Current concepts of follicle-stimulating hormone receptor gene regulation[J]. Biol Reprod, 2011, 84(1): 7-17.

[21] WU W J, HAN J, CAO R, et al. Sequence and regulation of the porcine FSHR gene promoter[J]. Anim Reprod Sci, 2015, 154: 95-104.

[22] SAIRAM M R, SUBBARAYAN V S. Characterization of the 5′ flanking region and potential control elements of the ovine follitropin receptor gene[J]. Mol Reprod Dev, 1997, 48(4): 480-487.

[23] XING W, SAIRAM M R. Characterization of regulatory elements of ovine follicle-stimulating hormone (FSH) receptor gene: The role of E-box in the regulation of ovine FSHreceptor expression[J]. Biol Reprod, 2001, 64(2): 579-589.

[24] TEINO I, KUUSE S, INGERPUU S, et al. The aryl hydrocarbon receptor regulates mouse Fshr promoter activity through an e-box binding site[J]. Biol Reprod, 2012, 86(3): 77.

[25] BARBASH Z S, WEISSMAN J D, CAMPBELL J A Jr, et al. Major histocompatibility complex class I core promoter elements are not essential for transcription in vivo[J]. Mol Cell Biol, 2013, 33(22): 4395-4407.

[26] YANG Z S, YOSHIOKA H, MCCARREY J R. Sequence-specific promoter elements regulate temporal-specific changes in chromatin required for testis-specific activation of the Pgk2 gene[J]. Reproduction, 2013, 146(5): 501-516.

[27] TA A, THAKUR B K, DUTTA P, et al. Double-stranded RNA induces cathelicidin expression in the intestinal epithelial cells through phosphatidylinositol 3-kinase-protein kinase Cζ-Sp1 pathway and ameliorates shigellosis in mice[J]. Cell Signal, 2017, 35: 140-153.

[28] THAKUR B K, DASGUPTA N, TA A, et al. Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms[J]. Nucleic Acids Res, 2016, 44(12): 5658-5672.

[29] KIM J S, GRISWOLD M D. E2F and GATA-1 are required for the Sertoli cell-specific promoter activity of the follicle-stimulating hormone receptor gene[J]. J Androl, 2001, 22(4): 629-639.

[30] BENNETT J, WU Y G, GOSSEN J, et al. Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility[J]. Endocrinology, 2012, 153(5): 2474-2485.

[31] LU C L, YANG W, CHEN M, et al. Inhibin A inhibits follicle-stimulating hormone (FSH) action by suppressing its receptor expression in cultured rat granulosa cells[J]. Mol Cell Endocrinol, 2009, 298(1-2): 48-56.

[32] HERMANN B P, HECKERT L L. Silencing of Fshr occurs through a conserved, hypersensitive site in the first intron[J]. Mol Endocrinol, 2005, 19(8): 2112-2131.

[33] QIN N, FAN X C, XU X X, et al. Cooperative effects of FOXL2 with the members of TGF-β superfamily on FSH receptor mRNA expression and granulosa cell proliferation from hen prehierarchical follicles[J]. PLoS One, 2015, 10(10): e0141062.

[34] ZHANG S, LI W, ZHU C C, et al. Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis[J]. J Biol Chem, 2012, 287(48): 40471-40483.

[35] DU X, LI Q, PAN Z, et al. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells[J]. Reproduction, 2016, 152(2): 161-169.

王德迪,李隐侠,姚一龙,潘增祥,决肯,依明,曹少先,李齐发
《畜牧兽医学报》 2018年第5期
《畜牧兽医学报》2018年第5期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号