更全的杂志信息网

On the Generalized Heisenberg Supermagnetic Model∗

更新时间:2016-07-05

1 Introduction

The nonlinear σ-models and their supersymmetric extensions have received a lot of attention[1]due to the widely application in gravity theory,[2]the theory of strings[3]and superstrings.[4]The simplest version of the nonlinear σ-model is the Heisenberg ferromagnet(HF)model,which reads as[5]

where S is the spin vector and satisfies the constraint S2=1.It is well known that the HF model is gauge equivalent and geometrical equivalent to the nonlinear Schrödinger equation(NLSE).[6−7]Growing interest has been focused on the extension of the HF model.[8−12]Kundu[13]constructed a deformed HF model and presented that it is gauge equivalent to the mixed derivative NLSE(MDNLSE),which plays an important role in explaining nonlinear propagation of Alfven wave[14]and ultrashot light pulse propagation in the optical fi ber.[15]Recently,Levin et al.[16]investigated the relation between the deformed HF model and the quantum 11-vertex R-matrix.By constructing the classical integrable tops,they establish more complicated integrable systems in terms of the quantum R-matrices.

More motivations come from supersymmetric integrable systems involving the supersymmetric extension of the important integrable systems.[17−22]The Heisenberg supermagnet(HS)model is the super extension of the HF model.It has attracted considerable interest in the study of the HS model and its corresponding gauge equivalent counterpart.[23]It should be noted that the HS model has close relation with the strong electron correlated Hubbard model.Ghose Choudhury and Roy Chowdhury[24]analyzed the nonlocal conservation laws and the corresponding supercharges in the HS model.Lately,the generalization of the integrable HS models attracts a lot of interest.The structure and integrability properties of the generalized HS models have been well discussed.[25−29]The purpose of this paper is to construct an extension of the HS model and to investigate their integrability.

The organization of this paper is as follows.In Sec.2,we recall the HS model and its integrable properties.Section 3 is dedicated to constructing the super generalized HS model and to deriving the Lax representation with two constraints.Using the gauge transformation,we study their gauge equivalent counterparts.In Sec.4,we end this paper with a summary and discussion.

2 HS Model

For later convenience,we shall recall the definitions of the HS model in this section.For a more detailed description we refer the reader to Ref.[23].

Being the superextensions of the HF model,the HS model reads as

where S is the superspin variable and can be represented

Let us decompose the super algebra uspl(2/1)into two orthogonal parts

whereS1,...,S4 arethebosonic componentsand B5,...,B8are the fermionic ones,X1,...,X4are bosonic generators and X5,...,X8are fermionic generators of the superalgebra uspl(2/1).They can be written as

where = σ123are Pauli matrices and I2is an identity matrix.

The gauge equivalence is an important concept in the integrable systems.Such interconnections allow us not only to understanding the structure and properties of nonlinear systems already known,but also to conclude about the properties of a system knowing the corresponding properties of its gauge-equivalent counterpart.One can also consider the gauge equivalence of the supersymmetric integrable systems. Under the two constraints(I)S2=S for S∈USPL(2/1)/S(L(1/1)×U(1))and(II)S2=3S−2I for S∈USPL(2/1)/S(U(2)×U(1))Makhankov and Pashaev[23]showed the HS model(2)is gauge equivalent to supersymmetric NLSE and Grassman odd NLSE,respectively

where φ(x,t)is a bosonic filed and ψ, ψ1, ψ2are the fermionic fileds.

3 Generalized Heisenberg Supermagnetic Model

satisfying the condition

where f is the function of x and t,p and q need to be determined later.For the constraint I,it is not difficult to check S[S,Sx]S=0,SSxS=0.We now take

1.2.6 Western blot 将细胞用胰酶消化后用细胞裂解液裂解,离心后收集上清,加入蛋白上样缓冲液,煮沸8 min,用10% SDS-PAGE电泳后,在100 V恒压条件下将蛋白从SDS-PAGE凝胶转移至PVDF膜上;将PVDF膜用含有0.2%Tween20的TBS缓冲液(TBST)洗涤后用含有5%脱脂奶粉的TBST 37 ℃封闭30 min;将第一抗体用TBST缓冲液稀释后,与PVDF膜一同装入杂交袋中,4 ℃过夜;TBST洗涤后将HRP标记的二抗与PVDF膜一同装入新的杂交袋中,室温摇床上放置30 min或者1 h;TBST缓冲液洗涤后进行ECL发光检测。

where λ is the spectral parameter.

The zero-curvature condition equation

where ψ1(x,t),ψ2(x,t)are the fermionic fields.Using the similar methods as shown before,we easily carry out

(2)学科带头人缺乏。学科带头人是指有一定的学术影响力、掌握某一学科研究方向的前沿动态,能够在本学科起带头作用、组建并带动一个学术团队从事研究活动、并完成建设规划内容的人员。从这个角度来说,现有师资队伍教授职称的缺失造成现有师资队伍中尚无严格意义上的学科带头人。

Now we will mainly be concerned with Eq.(11)in the frame work of the gauge equivalent.Proceeding the similar procedure as,[23]we suppose

where g(x,t)∈USPL(2/1).

Under the constraint I and II,we take Σ=diag(0,1,1)and Σ=diag(1,1,2),respectively.Then we introduce the currents

Considering the deformation of the HS model under the constraint I.S2=S,one easily gets SStS=0 and S[S,Sxx]S=0.Now we suppose the generalized HS model as follows

甲组和乙组手术时间、术中出血量、骨愈合时间、Harris评分、住院时间比较,差异有统计学意义(P<0.05),如表1。

建设开放包容的创新创业名城。在更高起点推进改革开放再出发,抢先布局“一带一路”交汇点建设。坚持以我为主高起点接轨上海,高度融入长三角世界级城市群建设与长三角一体化国家战略,认真谋划重大规划对接、区域协同创新、基础设施互联互通、生态环境联防联控、民生工程共建共享等重点举措。着力凸显苏州在苏南国家自主创新示范区的核心位置,强化高点定位和顶层设计,推动实现质的突破。

here[L(i),L(j)}⊂L(i+j)mod(2).L(0)is an algebra constructed by means of the generators of the stationary subgroup H.The stationary subgroup H is S(L(1/1)×U(1))and S(U(2)×U(1))for constraint I and II,respectively.

Based on the gauge transformation,F and G turn toandrespectively,

Taking

where φ(x,t)and ψ(x,t)are the bosonic and fermionic field,respectively.

Using Eqs.(12),(13),and(16),we obtain

Substituting Eq.(17)into Eq.(11),we have

Then we rewrite Eq.(7)as the expression

Equation(18)leads totakes the form

where

Substituting Eqs.(16)and(19)into Eq.(20)and integrating Eq.(20),we have

By mean of Eqs.(20),(21),and J0=+,we obtain J0.In terms of the gauge transformation,F and G in Eq.(8)becomeˆF andˆG,respectively,

Substituting Σ=diag(0,1,1),Eqs.(20)and(21)into Eq.(22),we have

where

where the spectral parameter λ satis fies λt= λx=0.

The zero-curvature condition equation ofˆF andˆG gives the super generalized MDNLSE

Under the reduction f=1,h=0,Eq.(26)reduces to the super MDNLSE.[25]In the bosonic limit and f=1,h=0,Eq.(26)leads to the MDNLSE.[13]

Let us take account of the generalized HS model(11)with the constraint II.It should be noted that the expression of the corresponding integrable extension is also Eq.(11).For this case,the corresponding F and G are

长大纵坡试验段沥青路面混合料的碾压分为初压、复压和终压三个过程,初压时采用先静后振的方式,以3~4.5km/h的速度碾压2遍,复压采用振动压实的方式,以3~4.5km/h的速度碾压4遍,终压采用静压的方式,以4~5km/h的碾压速度直到消除轮迹[3]。混合料的碾压过程应遵循“紧跟、慢压、高频、低幅”的原则。

铁路道岔维修养护工作是一项全面性和复杂性较高的工作,在工作中要明确维修养护的重点内容,对其进行针对性的重点养护,保证铁路道岔的质量。在道岔磨合阶段,针对尖轨、辙叉、基本轨出现的“肥边”,要及时开展打磨,避免剥落掉块等不良状况的产生。对于心轨侧磨问题的产生,检修人员要定期对护轮轨的间隔尺寸进行检查和调整,避免侧磨问题的加剧[5]。针对螺栓失效的问题,工作人员要对螺栓进行定期检查,及时对螺栓进行拧紧、加固,同时还要对螺栓的腐蚀程度进行检查养护,避免腐蚀严重影响道岔整体运行。另外,对于道岔内部的绝缘部件要进行定期检查和养护,保证铁路信号系统的正常运行。

As was done in the constraint I,we consider

基于关联规则挖掘的跨语言译后扩展核心问题是如何计算关联模式支持度.常见支持度计算主要有四种:(1)将关联模式在事务文档中发生的概率作为该模式的支持度[9];(2)将项目权值总和与无加权支持度的乘积作为加权项集支持度[15];(3)将特征词项目平均权值与无加权支持度的乘积作为完全加权项集支持度[11,16];(4)以项集在事务数据库中项集权值总和占事务数据库中所有项目权值总和的百分比作为完全加权项集支持度[10,17].文献[17]表明,方法(4)挖掘效果比方法(3)的好.然而,方法(4)只考虑特征词项目权值对支持度的影响,忽略特征词频度对支持度的作用.

Substituting Eq.(8)into Eq.(9),we obtain

where

从20世纪30年代开始国内外学者工程师就对负摩阻力进行试验和理论研究,取得了很多成果。研究主要集中在:理论研究方面,利用线性协调[1]、力的平衡[2-3]、弹性理论[4-5]等方法计算摩阻力的分布;利用荷载传递法预测单桩负摩阻力分布;试验方面主要通过桩摩阻力现场试验[6-10]和室内模拟试验[11-12]两种方式测出中性点的位置和摩阻力的分布;利用有限元方法计算摩阻力的分布[13-14]。上述方法中现场原位试验法费工费时、耗资巨大。而有限元法需要确定很多的参数,计算起来不方便。

Combining Eqs.(29)and(30),we have

状子是这样的:“氏年十九,夫死无子,翁壮而鳏,叔大未娶。”意思是这个媳妇年方十九岁,丈夫死了,没有给她留下儿子;公公正值壮年且鳏居,小叔子长大了也未娶亲。

综上所述,本文主要通过结合绘本内容进行补写、扩写、续写三方面对写话训练的实施办法进行了论述。总的来说,读写联动训练是确保小学低年级学生的语文综合素养能得到提升的关键,因此,相关教师在实际教学过程中应充分结合学生特点、绘本内容、读写联动训练目标等展开教学,确保绘本能在小学低年级阶段发挥出预期作用。

where Σ=diag(1,1,2).

By virtue of Eqs.(28)and(32),we rewrite Eq.(33)as follows

where the spectral parameter λ satis fies λt= λx=0.

From the zero-curvature condition equation of andwe obtain the generalized fermionic MDNLSE

满足读者需求,其实质是要求图书馆建立与读者之间的联系,随时了解读者的需求变化。比如,定期的读者反馈、与读者的交流活动,根据读者需求设计有针对性的阅读推广方案,必要时可以提供个性化的推广策略。完善读者需求调查及反馈系统有助于图书馆及时了解读者需求,推动品牌发展。

Introducing the reduction f=1 and h=0,Eq.(36)leads to the fermionic MDNLSE.[25]

4 Summary and Discussion

We construct the generalization of the HS model with two different constraints.The Lax pairs associated with the generalized models have been deduced.By means of the gauge equivalence,the related super MDNLSEs are derived,which can be regarded as the generalized super MDNLSEs.There has been a considerable interest in the study of the strong electron correlated Hubbard model due to its important applications in physics.Therefore,as to the applications of the integrable generalized HS models presented in this paper,their applications in physics still deserve further study.

2.1 两组患者手术前后生活质量评分比较 治疗前,两组患者社会功能、躯体功能、心理功能、物质生活状态等生活质量变化比较,差异无统计学意义(t=0.24、0.31、0.15、0.23,P>0.05);治疗后,两组患者社会功能、躯体功能、心理功能、物质生活状态评分均显著上升,组内相比差异有统计学意义(P<0.05),观察组显著高于对照组,差异有统计学意义(t=9.52、10.27、7.34、10.53,P<0.05)。见表2。

Acknowledgments

The authors thank the valuable suggestions of the referees.

湖北作为中国南方长江流域的一个省份,应该为有这样一处与兵马俑、半坡村齐名的大冶铜绿山古铜矿遗址而骄傲。兵马俑、半坡村遗址是黄河文明的产物,而铜绿山古铜矿遗址是长江文明的产物。二者齐头并进,形成华夏文明的源头。

References

[1]R.Geroch,J.Math.Phys.12(1971)918.

[2]F.Ernst,Phys.Rev.167(1968)1175.

[3]A.A.Zheltukhin,Theor.Math.Fiz.52(1982)73.

[4]D.Nemerschansky and S.Yankielowicz,Phys.Rev.Lett.54(1985)620.

[5]V.E.Zakharov and L.A.Takhtadzhyan,Theor.Math.Phys.38(1979)17.

[6]M.Lakshmanan and S.Ganesan,J.Phys.Soc.Jpn.52(1983)4031.

[7]M.Lakshmanan and S.Ganesan,Physica A 132(1985)117.

[8]A.V.Mikhailov and A.B.Shabat,Phys.Lett.A 116(1986)191.

[9]K.Porsezian,K.M.Tamizhmani,and M.Lakshmanan,Phys.Lett.A 124(1987)159.

[10]M.Lakshmanan,K.Porsezian,and M.Daniel,Phys.Lett.A 133(1988)483.

[11]W.Z.Zhao,Y.Q.Bai,and K.Wu,Phys.Lett.A 352(2006)64.

[12]J.F.Guo,S.K.Wang,K.Wu,et al.,J.Math.Phys.50(2009)113502.

[13]A.Kundu,J.Math.Phys.25(1984)3433.

[14]D.J.Kaup and A.C.Newell,J.Math.Phys.19(1978)798.

[15]A.A.Zabolotskii,Phys.Lett.A 124(1987)500.

[16]A.Levin,M.Olshanetsky,and A.Zotov,Nucl.Phys.B 887(2014)400.

[17]P.Di Vecchia and S.Ferrara,Nucl.Phys.B 130(1977)93.

[18]M.Chaichian and P.Kulish,Phys.Lett.B 78(1978)413.

[19]Yu.Manin and A.Radul,Commun.Math.Phys.98(1985)65.

[20]P.Mathieu,J.Math.Phys.29(1988)2499.

[21]D.Sarma,Nucl.Phys.B 681(2004)351.

[22]Z.Popowicz,Phys.Lett.A 354(2006)110.

[23]V.G.Makhankov and O.K.Pashaev,J.Math.Phys.33(1992)2923.

[24]A.Ghose Choudhury and A.Roy Chowdhury,Int.J.Theor.Phys.33(1994)2031.

[25]Z.W.Yan,M.L.Li,K.Wu,and W.Z.Zhao,Commun.Theor.Phys.53(2010)21.

[26]Z.W.Yan,M.R.Chen,K.Wu,and W.Z.Zhao,J.Phys.Soc.Jpn.81(2012)094006.

[27]Z.W.Yan,M.L.Li,K.Wu,and W.Z.Zhao,J.Math.Phys.54(2013)033506.

[28]Z.W.Yan and Gegenhasi,J.Nonlinear Math.Phys.23(2016)335.

[29]Z.W.Yan,M.N.Zhang,D.Y.Ren,et al.,Z.Naturforsch.A 72(2017)331.

Zhao-WenYan(颜昭雯),Xiao-JingZhang(张晓晶),RongHan(韩荣),andChuan-ZhongLi(李传忠)
《Communications in Theoretical Physics》2018年第5期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号