更全的杂志信息网

Impact of Tropospheric Ozone on Summer Climate in China

更新时间:2016-07-05

1. Introduction

Ozone is an important atmospheric species. In the troposphere, ozone can affect the atmospheric environment and human health. Moreover, it is a primary greenhouse gas (GHG). By absorbing longwave radiation, tropospheric ozone can alter the radiation balance and heat the atmosphere. Tropospheric ozone mainly originates from downward stratospheric ozone transport and the photochemical reaction of its precursors (nitrogen oxide, methane, carbon monoxide, and non-methane volatile organic compounds). Differing from other well-mixed GHGs, the distribution of tropospheric ozone is highly temporally and spatially dependent due to its short life of several weeks.

In China, there is significant seasonal variation in tropospheric ozone, with a maximum in summer and minimum in winter (Ziemke et al., 2011; Chen et al., 2015),which could be related to strong photochemical production and the high tropopause height in summer. Several studies based on observations from satellites, airplanes,and surface sites (Beig and Singh, 2007; Ding et al.,2008; Wang et al., 2009, 2012) found significant increases of tropospheric ozone in some areas of China,which could result from the increase in ozone precursors during the past several decades. Therefore, the climatic effects of tropospheric ozone may increase in the future and are worth studying.

The radiative effects of tropospheric ozone have drawn widespread attention. For example, Skeie et al.(2011) estimated a global radiative forcing of 0.44 W m-2 in 2010 induced by increasing tropospheric ozone since 1750, corresponding to 24% of carbon dioxide radiative forcing. Meanwhile, Stevenson et al. (2013) calculated a tropospheric ozone radiative forcing of 0.41 W m-2 for the period of 1750-2010 with 17 atmospheric chemistry models. Søvde et al. (2011) calculated a radiative forcing of 0.33 W m-2 from ozone variation during the industrial era. Shindell et al. (2006) simulated tropospheric ozone from 1890 to 1990, and found that tropospheric ozone resulted in enhanced warming ( > 0.5°C) during the boreal summer in the polluted northern continental regions. In addition, Shindell et al. (2012) found that ozone and particularly aerosols resulted in significant precipitation changes over East and South Asia as well as the Sahel region in historical simulations. Chang et al.(2009) conducted research on the climate responses to the changes in long-lived GHGs, aerosols, and tropospheric ozone during 1951-2000, and found that ozone altered the average surface air temperature from 1971 to 2000 in eastern China by 0.43°C and changed the average precipitation by 0.08 mm day-1. Xie et al. (2016) estimated an effective radiative forcing of 0.46 W m-2 induced by changes in tropospheric ozone concentrations between 1850 and 2013. The resulting changes in the global annual mean surface temperature and precipitation were 0.36°C and 0.02 mm day-1, respectively.

Overall, most studies have focused on radiative forcing derived from tropospheric ozone and the consequent impact on surface air temperature, and few studies have discussed the effects of tropospheric ozone on the monsoon circulation, precipitation, and feedback mechanism. Considering the increasing trend and clear seasonal changes in tropospheric ozone over eastern Asia, it is important to quantify and analyze its effects on regional climate to better understand tropospheric ozone-monsoon feedback. Therefore, in this study, the regional climate model RegCM4 was used to evaluate the effects of tropospheric ozone on the East Asian monsoon climate in summer and to analyze the possible influencing mechanisms.

2. Model and experiments

A regional climate model (RegCM4) established by the International Centre for Theoretical Physics and reported by Giorgi et al. (2012) was employed to investigate the climatic effects of tropospheric ozone. This model includes a chemistry module (Solmon et al., 2006; Zakey et al., 2006, 2008; Shalaby et al., 2012) and can be used to study the spatial and temporal distribution of various air pollutants and their climatic effects (e.g., Solmon et al., 2008; Zhou et al., 2013; Li et al., 2016).

In this modeling study, the emission inventory of air pollutants and GHGs from the International Institute for Applied Systems Analysis was used (Höglund-Isaksson,2012; Amann et al., 2013; Klimont et al., 2013; Stohl et al., 2013, 2015), which includes anthropogenic sources and open burning of agricultural residue. Regarding gasphase chemical boundary species, monthly average concentrations as a climatological representative derived from the Model for OZone And Related chemical Tracers (MOZART) were employed. A newly implemented Rapid Radiation Transfer Model (RRTM), as reported by Mlawer et al. (1997), was used to represent the radiation process. Moreover, the Holtslag boundary layer scheme (Holtslag et al., 1990), large-scale precipitation scheme (Pal et al., 2000), and Emanuel cumulus convection parameterization scheme (Emanuel, 1991; Emanuel and Živković-Rothman, 1999) were used in the model.The modeling domain covered China and its neighboring regions with 18 vertical layers and a 60-km horizontal resolution. The pressure value at the top of the model was 50 hPa. This model was driven by meteorological data from the ERA-Interim (Dee et al., 2011). Sea surface temperature data with a 1° × 1° resolution (Reynolds et al., 2002) were obtained from the NOAA. To estimate the radiative effect from tropospheric ozone, the climatology of tropopause pressure from the NCEP/NCAR reanalysis (Kalnay et al., 1996) was used. The simulation time included the months from May to August in 2001-10, with May used as the spin-up time.

Two groups of numerical experiments were designed to investigate the climatic effects of increased tropospheric ozone. For Experiment 1 (Exp1), the climatological data of preindustrial (1850) tropospheric ozone from the SPARC (Stratosphere-troposphere Processes And their Role in Climate) ozone database (Cionni et al.,2011) were employed in the radiation module. For Experiment 2 (Exp2), the real-time calculated ozone concentration from the chemistry module was transferred to the radiation module. Both Exp1 and Exp2 considered the radiative effects of tropospheric ozone. By comparing Exp1 and Exp2, the impact of increased tropospheric ozone on the regional climate of East Asia could be evaluated. In Exp2, the instantaneous radiative forcing, holding state variables (e.g., water vapor, tropospheric temperature, and clouds) fixed at the unperturbed values,was calculated by calling the radiative subroutine twice with the concentrations of preindustrial and present-day tropospheric ozone.

The observed column concentration of tropospheric ozone for model validation in the following section was obtained from the NASA’s Goddard Space Flight Center.These data, with a resolution of 1.25° × 1° (valid from October 2004 onward), were derived from the ozone measurements from the Ozone Monitoring Instrument(OMI) and Microwave Limb Sounder (MLS) onboard on the Aura satellite using the tropospheric ozone residual method (Ziemke et al., 2006, 2011). These data were verified with ozonesonde data and showed good reliability.

3. Result

3.1 Distribution of ozone

Table 2 presents the regionally averaged statistical results of the climatic effects due to the tropospheric ozone over different regions. Tropospheric ozone led to an increase in the net absorbed solar flux, an increase in the net longwave radiative flux (downward) at the top of the atmosphere, and an increase in surface air temperature over East Asia. In addition, increased tropospheric ozone enhanced the monsoon circulation over southern China and corresponding precipitation. Meanwhile, the effects showed the opposite trend over northern China. The climatic effects over eastern China were more significant than those over other areas of the modeling domain that corresponded to the distribution of tropospheric ozone.Compared to previous studies on the influence of the tropospheric ozone in China (Wu et al., 2003; Wang et al.,2004; Chang et al., 2009), there were several differences in the distribution and magnitude of the temperature change. Nevertheless, all of the simulations indicated that the tropospheric ozone resulted in an increase in the average surface air temperature over China. The differences between our work and other studies could be due to differences in the models and experimental designs. In addition, the absence of feedback at a larger scale that cannot be included in regional models may explain these differences.

3.2 Radiative forcing

Figure 2 mainly describes the clear-sky shortwave and longwave radiative forcings and all-sky shortwave and longwave radiative forcings at the tropopause from increased tropospheric ozone since pre-industrial times.Ultraviolet radiation (wavelength < 0.3 μm) is mainly absorbed by the stratospheric ozone; therefore, the clearsky shortwave radiative forcing was small, with high values in the east part of China. Meanwhile, clear-sky longwave radiative forcing was large in North China, East China, and Central China, with a maximum of approximately 0.8 W m-2. The distributions of shortwave and longwave radiative forcings showed good correlations with the distribution of the tropospheric ozone column concentration.

In this study, the tropospheric ozone distribution, radiative forcing, and climatic effects due to the increase in tropospheric ozone since the industrialization era in China during summer were investigated by using the regional climatic model RegCM4.

Figure 7 illustrates the changes in precipitation and zonally averaged (108°-122°E) specific humidity due to increased tropospheric ozone in summer. Tropospheric ozone caused an increase in precipitation in many parts of China, with a maximum of 3 mm day-1 in the middle and lower reaches of the Yangtze River. This could have been related to the enhanced ascending motion to the south of 34°N (Fig. 6). In addition, the southerly wind anomaly could carry more water vapor into the area (see Fig. 7b), which would be beneficial to the formation of precipitation. Meanwhile, the precipitation decrease in North China could be due to the weakening of the ascending motion and negative southerly wind anomaly.The precipitation change in pattern indicates that the circulation change induced by tropospheric ozone has an important influence on precipitation.

Figure 3 illustrates the net shortwave and longwave radiative flux (downward) changes and total cloud amount changes at the tropopause due to tropospheric ozone. The radiative flux changes were much larger than the radiative forcing due to the climate response. There were several corresponding relationships between the distributions of radiative flux change and all-sky radiative forcing. Moreover, the change in amplitude in the shortwave radiative flux was larger than that of the longwave radiative flux, which could have been associated with the change in the cloud amount (Fig. 3c) due to climatic adjustment. Meanwhile, the change in the cloud amount could have been due to the change in radiation balance and resulting circulation change (see discussion below).

上午十点,大林起床了。他一头濡湿地从小间里出来,就看见倩倩坐在门厅的一堆鞋子里搭积木。大林问女儿,你妈妈呢?倩倩说,打牌去了。大林说,宝宝肚子饿不饿?宝宝吃了饼干,不饿。爸爸肚子好饿。爸爸你吃宝宝的饼干呀。爸爸不吃宝宝的饼干,爸爸要吃宝宝的肉肉。大林说着就捉住倩倩的胳膊,张大嘴巴。倩倩咯咯地笑起来,并不躲避,还把另一只细小的胳膊也伸到大林的嘴边。

Fig. 1. Summer (June-August) mean column concentration (DU) of tropospheric ozone from (a) observations and (b) simulations (present-day)(2005-10). The observation data are from Aura OMI/MLS (Ziemke et al., 2006).

Fig. 2. Summer (June-August) mean clear-sky (a) shortwave and (b) longwave radiative forcings, and all-sky (c) shortwave and (d) longwave radiative forcings (W m-2) at the tropopause due to tropospheric ozone. The red contour lines represent the total cloud amount (%).

Table 1 shows the average shortwave, longwave, and total radiative forcings due to increased tropospheric ozone over southern China (22°-32°N, 108°-122°E),northern China (32°-42°N, 108°-122°E), eastern China(22°-42°N, 108°-122°E), and the whole modeling domain. The results from several other studies are also listed in Table 1. The regional average values over the modeling domain for clear-sky shortwave and longwave radiative forcings were 0.14 and 0.54 W m-2, respectively, similar to the radiative forcing over China from other studies, and was higher than the estimated global radiative forcing of 0.40 ± 0.20 W m-2 proposed by the Intergovernmental Panel on Climate Change (IPCC)(2013) and several other global results. This is indicative of significant heating effects of ozone over East Asia,particularly over eastern China, in summer.

Table 1. Radiative forcing (W m-2) due to increased tropospheric ozone from this study and previous studies

All-sky total radiative forcing at the tropopause Southern China 0.18 0.71 0.89 0.47 0.48 0.95 Northern China 0.18 0.71 0.89 0.41 0.44 0.85 Eastern China 0.18 0.71 0.89 0.44 0.46 0.90 Whole domain 0.14 0.54 0.68 0.28 0.41 0.69 IPCC (2013) 0.40 ± 0.20(global, annual)Skeie et al. (2011) 0.44 ± 0.13(global, annual)Søvde et al. (2011) 0.38 (global, annual)Stevenson et al.(2013)Clear-sky shortwave radiative forcing at the tropopause Clear-sky longwave radiative forcing at the tropopause Clear-sky total radiative forcing at the tropopause All-sky shortwave radiative forcing at the tropopause All-sky longwave radiative forcing at the tropopause 0.41 ± 0.20(global, annual)Chang et al.(2009)0.08 ± 0.02(global, annual)0.33 ± 0.09(global, annual)0.58 (global, JJA)1.16 (eastern China, JJA)Wang et al. (2005) 0.19 (China, July) 0.49 (China, July) 0.68 (China, July)

3.3 Climatic feedback

All-sky shortwave radiation forcing showed a different distribution from clear-sky shortwave radiation forcing, with high values in South China and Northeast China, which could have been caused by more clouds in these areas. Meanwhile, the distribution of all-sky longwave radiation forcing was similar to that of clear-sky longwave radiation forcing.

Figure 4 presents the changes in the surface air temperature caused by the tropospheric ozone. The tropospheric ozone resulted in an increase in the surface air temperature over most parts of East Asia, with a maximum of 0.2 K in East China, North China, and Northwest China. Combined with Fig. 3, we found that not only the absorption of longwave radiation by ozone, but also the cloud amount anomaly and corresponding shortwave radiation anomaly, had important effects on the surface air temperature change in China.

档案文化是劳动人民具有一定创造性的精神文化成果,并且更是人们在经过长期的生活实践进行不断积累得来的,其能够有效地对人际关系进行良好的维系,并且在一定程度上能够为有效推动人类文明的发展提供一定的精神财富。当前,我国已经进入了信息化时代,而文化以此为相应的传播载体,其影响范围也变得更加广泛。因此,档案文化更应该借助新媒体时代的良好条件充分发挥其作用,充分发挥其存在价值。

利用泸州当地酱香型新鲜酒糟加以油枯和牛粪等辅料通过发酵腐熟能够制成酒糟有机肥,制备的酒糟有机肥养分和重金属等有害成分含量以及蛔虫卵死亡率、粪大肠杆菌群数均符合相关技术标准。

Figure 5 shows the geopotential height field and wind vector at different isobaric surfaces and their changes induced by tropospheric ozone. Southerly wind prevailed in the lower troposphere over eastern China during summer, carrying large amounts of water vapor from the south ocean. There were a strong cyclonic wind field change and a geopotential height field anomaly over Northeast China, the Sea of Japan, and the Yellow Sea,which extended to Central China. This cyclonic wind field change became weaker with increasing height. Consequently, southerly wind decreased in northern China and increased in southern China in the lower troposphere.

Figure 6 illustrates the zonally averaged (108°-122°E)air temperature (shaded) and vertical wind field (stream)as well as their changes due to tropospheric ozone.Ozone caused an increase in air temperature in the whole atmosphere. The notable positive air temperature anomaly near the surface may have been caused by ozone from increased anthropogenic emissions. Meanwhile,temperature anomalies in the upper troposphere may have resulted from the latent heat release related to an enhancement in upward motion. There was a marked increase in air temperature over the area around 30°N,which led to a decrease in air density and strengthening of upward motion. The consequent convergence near the ground may have had a contributing role in enhancing the southerly wind over the region south of 30°N. Overall, the meridional land-sea thermal contrast increased due to significant heating over land, and thus, the meridional wind was strengthened to the south of the heating center.

The all-sky shortwave radiation forcing was much larger than the clear-sky shortwave radiation forcing,whereas the all-sky longwave radiation forcing was smaller than the clear-sky longwave radiation forcing. These differences may be attributed to the impact of clouds.Clouds can increase the albedo effect and reflect shortwave radiation, thereby making ozone absorb more shortwave radiation. Meanwhile, clouds can absorb longwave radiation and make the ozone over the cloud absorb less longwave radiation from the surface.

Fig. 3. Summer (June-August) mean net (a) shortwave and (b) longwave radiative flux changes (W m-2) at the tropopause, and (c) total cloud amount change (%) due to tropospheric ozone. Dotted areas denote results passing the t-test at the 90% confidence level (hereinafter inclusive).

Figure 1 shows the average column concentration of tropospheric ozone from the observations and simulations in summer (JJA) from 2005 to 2010. Ozone was largely distributed in Central China, North China, East China, and the Sichuan basin, with a maximum of about 55 Dobson Units (DU). This could have been due to the heavy traffic and highly developed industries in East and North China, which produce large amounts of ozone precursors. In addition, the summer monsoon may be a crucial influencing factor of the distribution of ozone. For example, southerly winds can blow air pollutants to northern China. This pattern showed similar distribution characteristics with previous simulation studies (e.g.,Wang et al., 2005; Hou et al., 2016). Compared to the observations, the simulation captured the distribution of ozone well, although there were overestimates in most parts of China and underestimates in some parts of North China and Northwest China. The column concentration differences could be related to the lack of some natural emission sources such as biogenic emissions and imperfections in the physics and chemistry modules used in the model.

Notably, the precipitation change due to increased tropospheric ozone showed a “southern flood and northern drought” pattern, similar to the influence of black carbon aerosols proposed by Menon et al. (2002). This could be because tropospheric ozone has similar radiative properties as black carbon. Both tropospheric ozone and black carbon heat the air over southern China, changing the meridional circulation and hydrologic cycle. Several studies (e.g., Wu et al., 2013; Song et al., 2014; Li et al.,2015; Zhang and Li, 2016) have examined the contribution of increased GHGs and anthropogenic aerosols on the East Asian summer monsoon variation. GHGs and anthropogenic aerosols have been found to produce competing effects on monsoon circulation and rainfall over East Asia. Anthropogenic aerosols lead to reduced rainfall and weakened monsoon circulation, while GHGs produce the opposite effects. This study illustrates that tropospheric ozone generally generates an impact similar to that of GHGs on the East Asian summer monsoon,particularly in southern China. In view of the high concentrations over East Asia, it is necessary to consider the radiative effects of tropospheric ozone in studies on changes in the East Asian summer monsoon.

Fig. 4. Summer (June-August) mean surface air temperature change(K) due to tropospheric ozone.

Fig. 5. Summer (June-August) (a, b, c) mean geopotential height field (shaded; gpm) and wind vector (arrow; m s-1), and (d, e, f) their changes at (a, d) 925 hPa, (b, e) 850 hPa, and (c, f) 500 hPa due to tropospheric ozone.

Fig. 6. Summer (June-August) (a) mean zonally averaged (108°-122°E) vertical wind stream and air temperature (shaded; K), and (b) their changes due to tropospheric ozone.

Fig. 7. (a) Changes in summer (June-August) mean precipitation (mm day-1) and (b) zonally averaged (108°-122°E) specific humidity (g kg-1)due to tropospheric ozone.

Table 2. Effects of tropospheric ozone on regional climate

Southern China Northern China Eastern China Whole modeling domain All-sky shortwave radiative flux (W m-2) 0.58 0.63 0.61 0.35 All-sky longwave radiative flux (W m-2) 1.18 0.64 0.90 0.76 Clear-sky shortwave radiative flux (W m-2) 0.25 0.19 0.22 0.19 Clear-sky longwave radiative flux (W m-2) 1.31 1.21 1.26 0.96 Cloud amount (%) 0.04 -0.30 -0.13 -0.01 Surface air temperature (K) 0.07 0.05 0.06 0.03 Zonal wind (m s-1) 0.05 -0.05 0.0004 0.013 Meridional wind (m s-1) 0.04 -0.04 0.0008 0.002 Total precipitation (mm day-1) 0.49 (2.7%) -0.05 (-0.3%) 0.22 (1.2%) 0.08 (0.5%)Large-scale precipitation (mm day-1) 0.14 (5.3%) 0.24 (4.0%) 0.19 (4.3%) 0.04 (1.5%)Convection precipitation (mm day-1) 0.35 (2.2%) -0.29 (-2.5%) 0.03 (0.2%) 0.04 (0.3%)

4. Conclusions

CEI计算软件系统的模块化结构如图3所示,包括CEI项目数据管理、CEI在线计算、CEI报告产生和ERPG数据管理等主要功能模块。

(4)工艺方法 本研究选择手工焊及自动焊方法,焊接位置选择立向上焊(3G)。自动焊采用的熔化极气体保护焊(G M AW),保护气体采用80%Ar+20%CO2混合气体。A r+C O2混合气体具有飞溅率低、熔敷效率高;合金元素的过渡系数大;焊缝的含氧量低;工艺参数调节范围大;焊缝成形好等特点。SA738Gr.B钢板自动焊使用脉冲电流,具有焊接过程飞溅小、较小的热输入、气孔倾向小等特点。

The column concentration of tropospheric ozone was large in East China, North China, Central China, and the Sichuan basin because of the distribution of ozone precursor emissions and the influence of the summer monsoon. Tropospheric ozone produced positive shortwave radiative forcing and positive longwave radiative forcing,which resulted in increases in the summer mean surface air temperature and precipitation over eastern Asia. The change in air temperature was significant in East China,Northwest China, and North China, which could be attributed to the absorption of longwave radiation by ozone and the negative cloud amount anomaly and corresponding positive shortwave radiation anomaly. The precipitation change was notable in the middle and lower reaches of the Yangtze River, where an anomaly of upward motion occurs. Enhanced southerly winds could carry more water vapor to this area, and would also be favorable to increasing precipitation. In addition, the enhancement of the monsoon circulation caused by tropospheric ozone strengthened both zonal wind and meridional wind at the lower troposphere over southern China in summer.

Overall, increased tropospheric ozone resulted in an increase in surface air temperature and an enlarged land-sea thermal contrast, thereby strengthening the summer monsoon and increasing precipitation. However,the feedbacks between the tropospheric ozone and regional climate are complex and have large uncertainties,which could result in a distribution of ozone somewhat inconsistent with the strength of the climatic effect.

或许在很多人看来,一去不复返的经典车设计在今天存在的意义只在于历史书或者博物馆,但在吴滨看来,自己的收藏更多时候是一种抛开铭记经典之外的欣赏与赞同。

This study yielded several preliminary conclusions regarding the climatic effects of increased tropospheric ozone in China in summer. Regardless, a number of questions remain unanswered. For example, the effects of aerosols on ozone via their effects on the photolysis rate and heterogeneous reactions have not been considered in the regional climate model. Moreover, the climatic effect caused by each ozone precursor emission has not been analyzed. These issues should be explored in the future research.

年轻刑警听着听着,嘴巴不知不觉地张大了,一条涎水悄悄打红嫩嘴唇角往下流。负责笔录的中年刑警咳了一声。年轻刑警一个激灵,立刻正襟危坐,跟着威严地咳了一声,说,你,继续交代。

REFERENCES

Amann, M., Z. Klimont, and F. Wagner, 2013: Regional and global emissions of air pollutants: Recent trends and future scenarios. Annu. Rev. Environ. Resour., 38, 31-55, doi:10.1146/annurev-environ-052912-173303.

Beig, G., and V. Singh, 2007: Trends in tropical tropospheric column ozone from satellite data and MOZART model. Geophys. Res. Lett., 34, L17801, doi: 10.1029/2007GL030460.

Chang, W. Y., H. Liao, and H. J. Wang, 2009: Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in eastern China over 1951-2000. Adv. Atmos. Sci., 26, 748-762, doi:10.1007/s00376-009-9032-4.

Chen, X., F. X. Huang, X. Q. Xia, et al., 2015: Analysis of tropospheric ozone long-term changing trends and affecting factors over northern China. Chinese Sci. Bull., 60, 2659-2666, doi:10.1360/N972015-00155. (in Chinese)

Cionni, I., V. Eyring, J. F. Lamarque, et al., 2011: Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys., 11, 11267-11292, doi:10.5194/acp-11-11267-2011.

Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137,553-597, doi: 10.1002/qj.828.

Ding, A. J., T. Wang, V. Thouret, et al., 2008: Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys., 8, 1-13, doi:10.5194/acp-8-1-2008.

Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313-2335, doi:10.1175/1520-0469(1991)048.

Emanuel, K. A., and M. ŽIvković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766-1782, doi: 10.1175/1520-0469(1999)056.

Giorgi, F., E. Coppola, F. Solmon, et al., 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 7-29, doi: 10.3354/cr01018.

Höglund-Isaksson, L., 2012: Global anthropogenic methane emissions 2005-2030: Technical mitigation potentials and costs.Atmos. Chem. Phys., 12, 9079-9096, doi: 10.5194/acp-12-9079-2012.

Holtslag, A. A. M., E. I. F. De Bruijn, and H. L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561-1575, doi:10.1175/1520-0493(1990)118.

Hou, X. W., B. Zhu, D. D. Fei, et al., 2016: Simulation of tropical tropospheric ozone variation from 1982 to 2010: The meteorological impact of two types of ENSO event. J. Geophys. Res.Atmos., 121, 9220-9236, doi: 10.1002/2016JD024945.

IPCC, 2013: Climate Change 2013: The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F.Stocker, D. Qin, G. K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York,NY, USA, 1535 pp.

Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor.Soc., 77, 437-472, doi: 10.1175/1520-0477(1996)077.

Klimont, Z., S. J. Smith, and J. Cofala, 2013: The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions.Environ. Res. Lett., 8 , 014003, doi: 10.1088/1748-9326/8/1/014003.

Li, X. Q., M. F. Ting, C. H. Li, et al., 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 4107-4125, doi:10.1175/JCLI-D-14-00559.1.

Li, S., T. J. Wang, F. Solmon, et al., 2016: Impact of aerosols on regional climate in southern and northern China during strong/weak East Asian summer monsoon years. J. Geophys.Res. Atmos., 121, 4069-4081, doi: 10.1002/2015JD023892.

Menon, S., J. Hansen, L. Nazarenko, et al., 2002: Climate effects of black carbon aerosols in China and India. Science, 297,2250-2253, doi: 10.1126/science.1075159.

Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: TMRR, a validated correlated-k model for the longwave. J. Geophys. Res.Atmos., 102, 16663-16682, doi: 10.1029/97jd00237.

Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos., 105, 29579-29594, doi: 10.1029/2000 jd900415.

Reynolds, R. W., N. A. Rayner, T. M. Smith, et al., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625, doi: 10.1175/1520-0442(2002)015.

Shalaby, A., A. S. Zakey, A. B. Tawfik, et al., 2012: Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geosci. Model Dev.,5, 741-760, doi: 10.5194/gmd-5-741-2012.

Shindell, D., G. Faluvegi, A. Lacis, et al., 2006: Role of tropospheric ozone increases in 20th-century climate change. J.Geophys. Res. Atmos., 111, D08302, doi: 10.1029/2005 JD006348.

Shindell, D. T., A. Voulgarakis, G. Faluvegi, et al., 2012: Precipitation response to regional radiative forcing. Atmos. Chem.Phys., 12, 6969-6982, doi: 10.5194/acp-12-6969-2012.

Skeie, R. B., T. K. Berntsen, G. Myhre, et al., 2011: Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys., 11, 11827-11857, doi: 10.5194/acp-11-11827-2011.

Solmon, F., F. Giorgi, and C. Liousse, 2006: Aerosol modelling for regional climate studies: Application to anthropogenic particles and evaluation over a European/African domain.Tellus B, 58, 51-72, doi: 10.1111/j.1600-0889.2005.00155.x.

Solmon, F., M. Mallet, N. Elguindi, et al., 2008: Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys. Res.Lett., 35, L24705, doi: 10.1029/2008GL035900.

Song, F. F., T. J. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41,596-603, doi: 10.1002/2013GL058705.

Søvde, O. A., C. R. Hoyle, G. Myhre, et al., 2011: The HNO3 forming branch of the HO2 + NO reaction: Pre-industrial-topresent trends in atmospheric species and radiative forcings.Atmos. Chem. Phys., 11, 8929-8943, doi: 10.5194/acp-11-8929-2011.

Stevenson, D. S., P. J. Young, V. Naik, et al., 2013: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13,3063-3085, doi: 10.5194/acp-13-3063-2013.

Stohl, A., Z. Klimont, S. Eckhardt, et al., 2013: Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys., 13,8833-8855, doi: 10.5194/acp-13-8833-2013.

Stohl, A., B. Aamaas, M. Amann, et al., 2015: Evaluating the climate and air quality impacts of short-lived pollutants. Atmos.Chem. Phys., 15, 10529-10566, doi: 10.5194/acp-15-10529-2015.

Wang, T. J., M. Xie, L. J. Gao, et al., 2004: Development and preliminary application of a coupled regional climate-chemistry model system. J. Nanjing Univ. (Nat. Sci.), 40, 711-727, doi:10.3321/j.issn:0469-5097.2004.06.007. (in Chinese)

Wang, T., X. L. Wei, A. J. Ding, et al., 2009: Increasing surface ozone concentrations in the background atmosphere of southern China, 1994-2007. Atmos. Chem. Phys., 9, 6217-6227,doi: 10.5194/acp-9-6217-2009.

Wang, W. G., J. Wu, H. N. Liu, et al., 2005: Researches on the influence of pollution emission on tropospheric ozone variation and radiation over China and its adjacent area. Chinese J. Atmos. Sci., 29, 734-746, doi: 10.3878/j.issn.1006-9895.2005.05.07. (in Chinese)

Wang, Y., P. Konopka, Y. Liu, et al., 2012: Tropospheric ozone trend over Beijing from 2002-2010: Ozonesonde measurements and modeling analysis. Atmos. Chem. Phys., 12,8389-8399, doi: 10.5194/acp-12-8389-2012.

Wu, J., W. M. Jiang, H. N. Liu, et al., 2003: The influence of increasing ozone in troposphere on air temperature in China.Plateau Meteor., 22, 132-142, doi: 10.3321/j.issn:1000-0534.2003.02.006. (in Chinese)

Wu, P. L., N. Christidis, and P. Stott, 2013: Anthropogenic impact on earth’s hydrological cycle. Nat. Climate Change, 3,807-810, doi: 10.1038/nclimate1932.

Xie, B., H. Zhang, Z. L. Wang, et al., 2016: A modeling study of effective radiative forcing and climate response due to tropospheric ozone. Adv. Atmos. Sci., 33, 819-828, doi:10.1007/s00376-016-5193-0.

Zakey, A. S., F. Solmon, and F. Giorgi, 2006: Implementation and testing of a desert dust module in a regional climate model.Atmos. Chem. Phys., 6, 4687-4704, doi: 10.5194/acp-6-4687-2006.

Zakey, A. S., F. Giorgi, and X. Bi, 2008: Modeling of sea salt in a regional climate model: Fluxes and radiative forcing. J. Geophys. Res. Atmos., 113, D14221, doi: 10.1029/2007JD009209.Zhang, L., and T. Li, 2016: Relative roles of anthropogenic aerosols and greenhouse gases in land and oceanic monsoon changes during past 156 years in CMIP5 models. Geophys.Res. Lett., 43, 5295-5301, doi: 10.1002/2016GL069282.

Zhou, Y., J. Jiang, A. N. Huang, et al., 2013: Possible contribution of heavy pollution to the decadal change of rainfall over eastern China during the summer monsoon season. Environ. Res.Lett., 8, 044024, doi: 10.1088/1748-9326/8/4/044024.

Ziemke, J. R., S. Chandra, B. N. Duncan, et al., 2006: Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res. Atmos.,111, D19303, doi: 10.1029/2006JD007089.

Ziemke, J. R., S. Chandra, G. J. Labow, et al., 2011: A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmos. Chem.Phys., 11, 9237-9251, doi: 10.5194/acp-11-9237-2011.

ShuLI,TijianWANG,ProdromosZANIS,DimitrisMELAS,andBingliangZHUANG
《Journal of Meteorological Research》2018年第2期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号