更全的杂志信息网

钢结构用自锁式单向螺栓抗拉刚度分析模型

更新时间:2009-03-28

0 引 言

单向螺栓是指连接使用时仅需从被紧固板材一侧进行紧固的螺栓,用于封闭截面连接等不易同时触及连接件两侧的构件连接。

目前,国外有多种不同的单向螺栓产品,例如英国Lindapter International公司的Hollo-Bolt以及根据Hollo-Bolt改进而成的RMH螺栓[1-3]和EHB螺栓[4-5]、英国Advanced Bolting Solutions公司的Molabolt螺栓、英国Blind Bolt公司的Blind Bolt螺栓、美国LNA Solutions公司的BoxBolt,Huck International公司的BOM,HSBB[6]和Ultra-Twist螺栓、澳大利亚Ajax Engineered Fasteners公司的ONESIDE Fastener螺栓、荷兰Flowdrill B V公司的Flowdrill[7]技术等。然而,中国以前没有成熟的单向螺栓产品。

教科书中的做法:金鱼藻在质量分数为0.1%的碳酸氢钠溶液中光合作用释放出氧气。不足之处:①由于水体被污染,很多地方难以找到金鱼藻,限制实验的开出;②金鱼藻在0.1%的碳酸氢钠溶液光合作用放出氧气速度慢,尤其是光照比较弱时。实验证明,10.0 g金鱼藻放入1 400 g 0.1%的碳酸氢钠溶液中在中等强光下光合作用1.5 h只收集到2.9 mL氧气。

国内外学者对于单向螺栓产品以及单向螺栓连接节点进行了研究[8-17],但主要侧重于单向螺栓的承载力性能,对于单向螺栓抗拉刚度还没有提出比较完善的理论模型。本文根据自锁式单向螺栓研制开发时完成的轴向拉伸试验结果,进一步研究了自锁式单向螺栓的初始抗拉刚度,结合理论计算结果和试验结果提出了单向螺栓初始抗拉刚度分析模型。本文中研究的单向螺栓抗拉刚度为单向螺栓本身的抗拉刚度,即单向螺栓在预拉力消失后的抗拉刚度,而预拉力消失以前的单向螺栓抗拉刚度包含钢板的刚度。

1 单向螺栓简介

钢结构用自锁式单向螺栓可以方便地用于封闭截面构件的连接,如图1所示。安装时把单向螺栓穿入连接板件,使钢垫圈与连接板贴紧(橡胶垫圈需进入螺栓孔内);然后,使用扳手固定住钢垫圈,同时,使用扭矩扳手或电动扳手拧紧螺栓头,此时,由于锥头已经被套筒锁住,螺杆和锥头间发生相对转动,锥头不断向螺栓头方向移动,进而使套筒撑开,套筒撑开的四肢卡住连接钢板;拧紧螺栓头至安装扭矩,安装完成。图2为钢结构用自锁式单向螺栓安装前后示意。

  

图1 钢结构用自锁式单向螺栓安装示意Fig.1 Schematic Diagram for Installation of Self-lock One-side Bolt for Steel Structure

  

图2 钢结构用自锁式单向螺栓安装前后示意Fig.2 Schematic Diagram of Self-lock One-side Bolt for Steel Structure Before and After Installation

本文研究采用的是由同济大学研制开发的钢结构用自锁式单向螺栓STUCK-BOM[18],该螺栓包括锥头、套筒、橡胶垫圈、钢垫圈、标准螺杆5个部件,按图3所示顺序拼装单向螺栓即可成型。

  

图3 钢结构用自锁式单向螺栓组成部件Fig.3 Components of Self-lock One-side Bolt for Steel Structure

此钢结构用自锁式单向螺栓有8.8级与10.9级2种级别,分别代表螺杆使用标准8.8级和10.9级高强度螺栓全螺纹螺杆,每种强度等级螺栓的型号、尺寸与适用范围如表1所示。

 

表1 钢结构用自锁式单向螺栓型号、尺寸与适用范围Tab.1 Models, Sizes and Application Scopes of Self-lock One-side Bolts for Steel Structure

  

螺栓型号螺杆尺寸适用连接板厚度/mm8.8-SB16-1M16×7512~298.8-SB16-2M16×10029~508.8-SB16-3M16×12050~718.8-SB20-1M20×9020~368.8-SB20-2M20×12036~608.8-SB20-3M20×15060~8610.9-SB16-1M16×7512~2910.9-SB16-2M16×10029~5010.9-SB16-3M16×12050~7110.9-SB20-1M20×9020~3610.9-SB20-2M20×12036~6010.9-SB20-3M20×15060~86

2 国产自锁式单向螺栓轴向拉伸试验

2.1 试验方案

试验使用单向螺栓连接2块方形辅助构件,如图4所示,中间连接板厚度h随单向螺栓型号不同(可连接厚度不同)而改变,测量中间连接板随着荷载增加被逐渐拉开的位移。8.8级与10.9级单向螺栓的试验编号、螺栓型号与连接板厚度如表2,3所示,每组试验重复3次。

  

图4 轴向拉伸试验辅助构件(单位:mm)Fig.4 Auxiliary Components of Axial Tensile Test (Unit:mm)

 

表2 钢结构用国产自锁式8.8级单向螺栓轴向拉伸试验方案Tab.2 Axial Tensile Test Scheme of Domestic Class 8.8 Self-lock One-side Bolt for Steel Structure

  

螺栓型号试验连接的钢板厚度/mm试验编号8.8-SB16-120L-8.8-SB16-1-124L-8.8-SB16-1-228L-8.8-SB16-1-38.8-SB16-232L-8.8-SB16-2-140L-8.8-SB16-2-250L-8.8-SB16-2-38.8-SB16-350L-8.8-SB16-3-160L-8.8-SB16-3-270L-8.8-SB16-3-38.8-SB20-128L-8.8-SB20-1-132L-8.8-SB20-1-236L-8.8-SB20-1-38.8-SB20-236L-8.8-SB20-2-150L-8.8-SB20-2-260L-8.8-SB20-2-38.8-SB20-360L-8.8-SB20-3-170L-8.8-SB20-3-280L-8.8-SB20-3-3

2.2 试验结果

接触面的法向应力和切向应力分布可表示为

单向螺栓受拉时,除螺杆发生拉伸变形外,套筒与螺栓锥头间还可能发生相对滑移,因此抗拉刚度较普通螺栓小。

 

表3 钢结构用国产自锁式10.9级单向螺栓轴向拉伸试验方案Tab.3 Axial Tensile Test Scheme of Domestic Class 10.9 Self-lock One-side Bolt for Steel Structure

  

螺栓型号试验连接的钢板厚度/mm试验编号10.9-SB16-120L-10.9-SB16-1-124L-10.9-SB16-1-228L-10.9-SB16-1-310.9-SB16-232L-10.9-SB16-2-140L-10.9-SB16-2-250L-10.9-SB16-2-310.9-SB16-350L-10.9-SB16-3-160L-10.9-SB16-3-270L-10.9-SB16-3-310.9-SB20-128L-10.9-SB20-1-132L-10.9-SB20-1-236L-10.9-SB20-1-310.9-SB20-236L-10.9-SB20-2-150L-10.9-SB20-2-260L-10.9-SB20-2-310.9-SB20-360L-10.9-SB20-3-170L-10.9-SB20-3-280L-10.9-SB20-3-3

由轴向拉伸荷载-位移曲线可得各组单向螺栓初始抗拉刚度的试验值,并用于后文中对单向螺栓初始抗拉刚度理论值进行检验。

通过对硖石镇今读三组声母的方言读音与普通话读音的相比较而言,可以看出,硖石镇方言知庄章今读ts声母主要来自于知组二等、三等字,庄组二等合章组二等字。知庄章今读的声母主要来自于知组三等字,庄组三等字。整体来看,知庄章三组字主要读作ts组和组,与开合口的组成也有很大关系。

3 自锁式单向螺栓拉伸变形(柔度)的组成

图5为自锁式单向螺栓受拉前后的简图。从图5可以看出,自锁式单向螺栓的拉伸变形由三部分组成:①螺杆的拉伸变形;②套筒分肢受到钢板和锥头的挤压发生变形;③在拉力作用下,螺杆与锥头作为一个整体被往上拉,产生从套筒上侧拔出的趋势,使锥头与套筒间发生相对滑移。因此,自锁式单向螺栓的拉伸变形(柔度)可表示为

δsb=δlg+δtt+δslip

(1)

  

图5 自锁式单向螺栓受拉示意图Fig.5 Schematic Diagram of Self-lock One-side Bolt Under Tension

式中:S为接触面积。

文献[20]曾经计算了英国类似单向螺栓Hollo-Bolt的套筒变形,本文计算方法参考文献[20]的方法,并结合国产自锁式单向螺栓的实际情况改进而来。

 

(2)

式中:ksb为单向螺栓的初始抗拉刚度系数;klg为螺杆的抗拉刚度系数;ktt为套筒的径向变形刚度系数;kslip为锥头与套筒间相对滑移贡献的刚度系数。

4 自锁式单向螺栓初始抗拉刚度的理论计算模型

4.1 螺杆的抗拉刚度系数klg

标准螺杆的抗拉刚度系数klg可以参考欧洲规范[19]给出的计算公式,即

klg=1.6As/Lb

(3)

 

(4)

式中:As为螺杆的有效面积,对于SB16,As=157 mm2,对于SB20,As=245 mm2Lb为螺杆长度;tT1,tT2为2块连接板厚度;tw1为钢垫圈厚度,对于SB16,tw1=8 mm,对于SB20,tw1=10 mm;tw2为橡胶垫圈厚度,对于SB16,tw2=5 mm,对于SB20,tw2=6 mm;th为螺栓头高度 ,对于SB16,th=5 mm,对于SB20,th=6 mm;tn为锥头高度 ,对于SB16,tn=18 mm,对于SB20,tn=22 mm。

因此,螺杆的抗拉刚度Klg

改革开放40年来中国的扶贫开发一直在占全国1/3左右的县(区)展开,不计其数的各级干部尤其是基层干部参与其中。仅精准扶贫开展以来,每年有近百万的干部参加帮扶。大量的干部工作到扶贫第一线,直接与贫困户、贫困村打交道,了解贫困户的致贫原因、帮助参谋和设计扶贫项目和脱贫方式,使参与其中的干部能够比较深入地了解和认识国情,培养踏实的工作作风,在工作过程中也锻炼了干部的能力。这些经历和锻炼成为参与帮扶干部的宝贵财富,也将成为提高政府部门尤其是基层组织的决策水平和管理绩效的重要推手。

Klg=klgE

(5)

式中:E为螺杆的弹性模量。

常用的牙膏营养保健剂有维生素C、 维生素E、 酪蛋白磷酸肽、表皮生长因子(EGF)、人参、芦荟、蜂胶和珍珠等。

4.2 套筒的径向变形刚度系数ktt

因此,自锁式单向螺栓的初始抗拉刚度可以通过这三部分的柔度系数来表达,即

  

图6 套筒简图Fig.6 Schematic Diagram of Sleeve

由于套筒仅受到来自钢板与锥头的力,因此套筒的实际受力范围只有钢板与锥头之间的一小部分,如图6套筒中的K点和L点之间。将套筒沿径向剖开,取横截面进行受力分析,如图7所示,其中,s1K点到套筒肢延长线与轴线交点的距离,s2L点到套筒肢延长线与轴线交点的距离,dtcm为锥头最宽处直径,dtct为锥头顶部直径,α为套筒肢撑开的角度,qb为套筒与锥头的接触压应力,B为螺杆受到的力。

  

图7 套筒受力分析Fig.7 Stress Analysis of Sleeve

图7中,K点到L点间为套筒的受力段,钢板在K点把集中线荷载传递到套筒上,锥头在K点到L点间把分布面荷载传递到套筒上。从K点到L点间取出一段微元体进行分析,如图8所示,其中,s为套筒微元体到套筒肢延长线与轴线交点的距离,Ns为套筒微元体受到的径向合力,Nθ为套筒微元体受到的环向合力,ps为沿套筒径向的应力,pr为沿套筒法向的应力,r1r2R为尺寸参数。

  

图8 套筒微元体分析Fig.8 Microelement Analysis of Sleeve

将式(25),(26)代入式(24)中,可求得黏着区的位移为

 

(6)

 

(7)

 

(8)

 

(9)

式中:Aslp为套筒与锥头在水平投影上的接触面积;γ为考虑套筒开缝的修正系数;对于SB16,dtcm=25 mm,对于SB20,dtcm=30 mm;对于SB16,dtct=19.2 mm,对于SB20,dtct=24.2 mm;bs为套筒开缝宽度,对于SB16,bs=1.3 mm,对于SB20,bs=1.6 mm。

对式(6),(7)进行积分,得

 
 

(10)

 

(11)

其中

 
 

式中:为单元沿径向的合力为单元沿环向的合力;ν为泊松比。

根据胡克定律为径向应变,σθ为径向应力,σs为环向应力,ts为套筒厚度,对于SB16,ts=4.375 mm,对于SB20,ts=5.875 mm),可得单元体在水平方向的变形δx

 

(12)

式中:对于SB16,ts=4.375 mm,对于SB20,ts=5.875 mm。

将式(10),(11)代入式(12),单元体在竖直方向的变形δy可以表示为

δy=-δxtan(α)=

 

(13)

单元体在竖直方向的最大位移可以认为发生在锥头与套筒接触区域的底部,因此,令s=s2,单元体在竖直方向的最大位移可以表示为

 

(14)

根据式(14),套筒的径向变形刚度系数ktt

防汛抗旱关乎民生福祉,关乎社稷安危。2013年,南方大旱、东北洪水、沿海强台风……面对严峻的汛情和旱情,在党中央、国务院的坚强领导下,国家防总超前部署,科学应对,夺取了防汛抗旱工作的全面胜利。日前,本刊记者采访了国家防汛抗旱总指挥部办公室主任张志彤。

无论指示代词还是定冠词都是指称确定的单一对象的标志,这似乎是专名(nomen proprium)的应有之义。然而在弗雷格看来,反过来却不能将以不定冠词为其标志的概念词视为指称多个不确定对象的通名。因为他的概念词也具有一个确定的指称或意谓,即一个概念:

 

(15)

因此,套筒的径向变形刚度为

“实话跟你说吧,”男中音说,“那家锁具厂曾经是我们的合作伙伴,因为经营不善已经倒闭了。不过请你放心,这个事情我们决不会坐视不管,稍后我通知经销商,让她派人将两家的门锁全部换新。”

五年究竟算不算是一个漫长的时光,这得由她们双方在自己的内心中估算,人生有多少个五年是可以计数的。两个人恋爱了五年还不能够结婚,还整日喋喋不休的争来吵去,就都累了,更觉得没有意思了。

Klg=kttE

(16)

4.3 锥头与套筒间的相对滑移刚度系数kslip

首先把锥头与套筒的接触区域等效为一个圆形的接触区,如图9所示(其中,a为接触区域半径,c为黏着区半径),包含滑动区和黏着区,根据面积等效计算接触区域半径a,如式(17)所示。

  

图9 等效接触区域Fig.9 Equivalent Contact Area

(17)

 
 

(18)

式中:γ1为考虑套筒开缝减少接触面积的修正系数;γ2为考虑锥头棱角减少接触面积的修正系数;tn1为锥头与套筒接触长度,tn1=3.7 mm;dnsl为套筒的内径,对于SB16,dnsl=17 mm,对于SB20,dnsl=21 mm。

钢结构用国产自锁式单向螺栓抗拉承载力较高。单向螺栓在轴向受拉时有2种破坏模式:①单向螺栓从螺栓孔中拔出;②单向螺栓的螺杆被拉断。

pr=p0[1-(r/a)2]1/2

(19)

τr=τ(1)+τ(2)

根据德国《著作权法》,如果软件是慕尼黑工业大学的员工(雇员)在承担任务时或是在教师(雇主)的指导下开发出来的,慕尼黑工业大学与开发人(发明人)协商后,有权力行使计算机软件相关的所有经营权利[5]。

(20)

 

(21)

τ1=μp0

(22)

τ(2)=-τ2(1-r2/c2)1/2

(23)

式中:τr为接触面上一点的切向应力;τ1τ2为切向应力参量,可依据相应的边界条件确定;p0为接触面上的平均法向应力;FN为接触面上法向合力;τ(1)τ(2)为经典赫兹应力分布式。

根据赫兹应力理论,由应力prτr产生的表面微观位移ux

 
 

(24)

式中:G为材料的剪切模量。

假定2个边界条件:①黏着区内位移恒定,ux(r)为常量,r<c;②滑动区内满足库仑摩擦定律,τr(r)=μpr(r)(μ为接触面的摩擦因数),c<r<a

将边界条件代入式(19),(20),(24)可得

τ(1)=τ1(1-r2/a2)1/2

作为一名80后农村小学校长,我在工作中也有很多困惑和压力。但是,我没有气馁,巧释工作压力,带领学校不断前行。

(25)

τ2=μp0c/a

(26)

切向应力τr在接触面内积分,切向力合力Fx

 

(27)

式中:δsb为单向螺栓的拉伸变形;δlg为螺杆的拉伸变形;δtt为套筒的变形;δslip为锥头与套筒间的相对滑移。

将式(21),(25),(26)代入(27),可得

 

(28)

通过对力的分解,得

传统的小学语文课堂教学只要求学生进行基础知识的掌握,而课堂形式也不够多样化,这样单一的课堂教学不仅不容易提高学生的核心素养,而且甚至都无法提高学生对语文学习的积极性。所以教师注意完善课堂教学,例如运用兴趣引导法、情景模拟法、自由问答法等多样化的教学手段,营造出和谐融洽的课堂氛围。

 

(29)

因此,切向接触刚度Kslip

 

(30)

由于刚度系数kslip=Kslip/E,则

 

(31)

由于锥头与套筒间的摩擦因数μ与接触区域半径a较难确定,这里取不同的摩擦因数μ与接触区域半径a进行计算,观察μakslip的影响,结果如表4,5所示。

 

表4 摩擦因数μkslip的影响(a=1.4 mm)Tab.4 Impact of Friction Coefficient μ on kslip (a=1.4 mm)

  

摩擦因数μkslip/mmKslip/(kN·mm-1)0.30.5221080.40.5801200.60.6201280.80.6361311.00.646133

 

表5 接触区域半径akslip的影响(μ=0.4)Tab.5 Impact of Contact Area Radius a on kslip (μ=0.4)

  

接触区域半径a/mmkslip/mmKslip/(kN·mm-1)1.00.415851.20.4981021.40.5801201.60.6631371.80.746154

从表4,5可以看出:摩擦因数μ较小时(0.3~0.6)相比μ较大时(0.6~1.0)对kslip影响更大;接触区域半径akslip线性相关,相比摩擦因数μkslip影响更大。

俗语说“不怕狂风一片,就怕贼风一线”。大风降温前要及时检查屋顶、四壁及门窗的的缝隙,防止贼风从圈舍、门窗的鼠洞、漏缝、缺口等处吹进。同时对门、窗也要加固,以防大风把门、窗刮坏,形成穿堂风。

本研究入选的14篇文献,要求排除报警症状者11项(78.57%),但每篇文献的报警症状都不一致。参考罗马IV标准中列出的FAP报警症状[3]和Motamed等[24]归纳出腹痛的“红旗征”,建议在试验设计时,排除炎症性肠病、乳糜泻或消化性溃疡家族史,持续性右上腹痛,吞咽困难,吞咽痛,持续呕吐,胃肠道失血,关节炎,直肠周围病变,非意向性体重减轻,生长缓慢,青春期延迟,难以解释的发热,以及非脐周的疼痛,夜间疼痛,腹部压痛,ESR升高等。

至此,单向螺栓轴向抗拉刚度各部分刚度贡献已完成计算,可根据式(2)计算单向螺栓轴向抗拉刚度的理论值,并与试验值进行比较。

5 试验结果与理论计算结果对比

国产自锁式单向螺栓轴向抗拉刚度的理论计算结果与试验结果对比见表6。从表6可以看出,理论计算结果与试验结果吻合较好。

 

表6 抗拉刚度计算结果与试验结果对比Tab.6 Comparison of Calculation Results and Test Results of Tensile Stiffness

  

试验编号Ksb试验结果/(kN·mm-1)Ksb计算结果/(kN·mm-1)相对误差/%L-8.8-SB16109.7700104.83970-4.491L-8.8-SB2088.550887.44730-1.246L-10.9-SB1698.330894.85754-3.728L-10.9-SB20102.139798.70772-3.360

6 结语

(1)钢结构用国产自锁式单向螺栓的初始抗拉刚度由螺杆的拉伸变形、套筒的变形、锥头与套筒间的相对滑移三部分组成,其中最主要的影响因素为锥头与套筒间的相对滑移。

(2)锥头与套筒间接触区域的大小对自锁式单向螺栓初始抗拉刚度的影响较大。

(3)本文提出的自锁式单向螺栓抗拉刚度分析模型结果与试验结果吻合较好。

参考文献:

References:

[1]吴玉全,汪 发.梁-钢管柱节点暗螺栓连接研究概述[J].低温建筑技术,2011(2):48-50.

WU Yu-quan,WANG Fa.Overview of Research of Beam-hollow Column Joints with Blind Blots[J].Low Temperature Architecture Technology,2011(2):48-50.

[2]TIZANI W,RIDLEY-ELLIS D J.The Performance of a New Blind-bolt for Moment-resisting Connections[C]// JAURIETTA M A,ALONSO A,CHICA J A.Tubular Structures X:Proceedings of the 10th International Symposium on Tubular Structures.Rotterdam:Balkema A A,2003:395-400.

[3]TIZANI W,AL-MUGHAIRI A,OWEN J S,et al.Rotational Stiffness of a Blind-bolted Connection to Concrete-filled Tubes Using Modified Hollo-bolt[J].Journal of Constructional Steel Research,2013,80(1):317-331.

[4]RAHMAN N A.Fatigue Behaviour and Reliability of Extended Hollobolt to Concrete Filled Hollow Section[D].Nottingham:University of Nottingham,2012.

[5]TIZANI W,WANG Z Y,HAJIRASOULIHA I.Hysteretic Performance of a New Blind Bolted Connection to Concrete Filled Columns Under Cyclic Loading:An Experimental Investigation[J].Engineering Structures,2013,46:535-546.

[6]MOURAD S.Behaviour of Blind Bolted Moment Connections for Square HSS Columns[D].Hamilton:McMaster University,1994.

[7]HOOGENBOOM A J.Flow Drill for the Provision of Holes in Sheet Material:USA,US4454741[P].1984-06-19.

[8]TABSH S W,MOURAD S,KOROL R M.Structural Safety of Ultra-twist Blind Fasteners in Tension[J].Canadian Journal of Civil Engineering,1997,24(2):211-217.

[9]MIRZA O,UY B.Behaviour of Composite Beam-column Flush End-plate Connections Subjected to Low-probability,High-consequence Loading[J].Engineering Structures,2011,33:647-662.

[10]LIU Y,MALAGA-CHUQUITAYPE C,ELGHAZO-ULI A Y.Behaviour of Beam-to-tubular Column Angle Connections Under Shear Loads[J].Engineering Structures,2012,42:434-456.

[11]ELGHAZOULI A Y,MLAGA-CHUQUITAYPE C,CASTRO J M,et al.Experimental Monotonic and Cyclic Behaviour of Blind-bolted Angle Connections[J].Engineering Structures,2009,31:2540-2553.

[12]王静峰,张 琳,戴 阳.半刚性钢管混凝土框架梁柱端板连接抗震性能试验研究[J].土木工程学报,2012,45(11):13-21.

WANG Jing-feng,ZHANG Lin,DAI Yang.Seismic Experimental Study of End Plate Connections for Semi-rigid Concrete-filled Steel Tubular Frames[J].China Civil Engineering Journal,2012,45(11):13-21.

[13]WANG J,SPENCER JR B F.Experimental and Analytical Behavior of Blind Bolted Moment Connections[J].Journal of Constructional Steel Research,2013,82:33-47.

[14]李国强,段 炼,陆 烨,等.H 型钢梁与矩形钢管柱外伸式端板单向螺栓连接节点承载力试验与理论研究[J].建筑结构学报,2015,36(9):91-100.

LI Guo-qiang,DUAN Lian,LU Ye,et al.Experimental and Theoretical Study of Bearing Capacity for Extended Endplate Connections Between Rectangular Tubular Columns and H-shaped Beams with Single Direction Bolts[J].Journal of Building Structures,2015,36(9):91-100.

[15]BARNETT T C,TIZANI W,NETHERCOT D A.The Practice of Blind Bolting Connections to Structural Hollow Sections:A review[J].Steel and Composite Structures,2001,1(1):1-16.

[16]LEE J,GOLDSWORTHY H M,GAD E F.Blind Bolted T-stub Connections to Unfilled Hollow Section Columns in Low Rise Structures[J].Journal of Constructional Steel Research,2010,66(8):981-992.

[17]LEE J,GOLDSWORTHY H M,GAD E F.Blind Bolted Moment Connection to Sides of Hollow Section Columns[J].Journal of Constructional Steel Research,2011,67(12):1900-1911.

[18]张杰华.钢结构用国产自锁式单向螺栓力学性能研究[D].上海:同济大学,2016.

ZHANG Jie-hua.Research on Mechanical Properties of Domestic Self-lock One-side Bolt[D].Shanghai:Tongji University,2016.

[19]EN 1993-1-8:2005,Eurocode 3:Design of Steel Structures.Part 1-8:Design of Joints[S].

[20]WANG Z Y,TIZANI W,WANG Q Y.Strength and Initial Stiffness of a Blind-bolt Connection Based on the T-stub Model[J].Engineering Structures,2010,32(9):2505-2517.

 
李国强,张杰华
《建筑科学与工程学报》2018年第02期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号