更全的杂志信息网

基于改进的双向渐进结构优化法的应力约束拓扑优化1)

更新时间:2009-03-28

引言

近20年来连续体结构拓扑优化获得了快速发展,成为工程创新设计的强有力工具.各种拓扑优化方法,例如基于材料分布的均匀化方法[1]、密度法/各向同性实体材料惩罚法(solid isotropic material with penalization,SIMP)[2]、渐进结构优化法 (evolutionary structural optimization,ESO)[3]、独立连续映射法(independent continuous mapping method,ICM)[4],基于几何边界描述的水平集方法 (level set method,LSM)[5],以及最近发展的移动可变形组件法(moving morphable components,MMC)[6],都被用来解决各种结构拓扑优化设计问题[7-14].

SW01抽水试验的主要含水层为泥盆系棋子桥组(D2q)灰岩岩溶裂隙水含水层,含水介质极不均一,地下水的分布和运动与一般的孔隙水、裂隙水相比,具分布更为不均匀,流态更复杂的特点。但是从图1可以看出,SW01孔以Q1、Q2、Q3流量进行抽水时, SW01孔内水位分别出现了稳定水位,表明其降落漏斗外形成了稳定的补给,地下水流动状态可视为稳定流,含水介质可视为无限延展的含水层,故本次单孔抽水试验可采用无压稳定流抽水试验的裘布依公式计算水文地质参数,计算公式如下:

由应力集中、或高应力值所引起的结构断裂、疲劳破坏严重影响其使用寿命,因此研究应力约束拓扑优化问题具有重要意义.与体积约束下的刚度最大化模型相比,考虑应力约束的拓扑优化有其自身的难点.第一个难点是所谓的“奇异解现象”[15-16].奇异解现象起源于桁架优化问题,Cheng和Jiang对拓扑优化问题中的奇异解给出了数学解释 [15],即它主要是由应力约束的不连续导致的.Duysinx和Bendsoe[17]指出在应力约束的连续体拓扑优化中也存在奇异解现象.目前常用的处理奇异解现象的方法包括ε松弛技术[16-18]qp松弛技术[19]等.

应力约束拓扑优化设计的第二个难点在于应力作为一个局部的物理量所引起的大量局部性约束.一般情况下,为了较为准确地计算结构的应力场,需要加密有限元网格,导致局部应力约束的数目增加,从而显著增加了局部应力约束的敏度分析的计算代价 [20-21].为了处理这个问题,通常采用逼近最大局部函数值的凝聚函数将局部应力约束转化为一个全局的应力约束[18,20-26]或者“分块”的应力约束[21,23,27].目前较为常用的凝聚函数有P范数[20-23]和 Kieisselmeier-Steinhauser(K-S)函数 [18,20,24-28],其中Yang和Chen[24]早在1996年采用K-S函数将诸多应力约束化为一个应力约束.另外一种有效方式是隋允康等利用von Mises强度理论,借助应变能将应力约束全局化,从而显著减少了应力约束个数[4].

应力约束拓扑优化问题的第三个难点在于应力的高度非线性行为.临近区域密度值的改变对结构某些关键区域的应力水平和非线性行为产生严重影响,特别是具有较大的空间应力梯度区域,如有凹陷角、拐角处[18,23,29].这就要求结构拓扑优化列式具备有效降低或者消去应力集中现象的能力,而且需要求解算法与优化列式保持数值一致性以确保优化问题的稳定收敛[23,29].

大部分考虑应力相关的拓扑优化问题都是基于SIMP法 [17-27,30]和水平集方法 [29,31-33].此外,Cai等[28,34]将水平集函数与有限胞元法结合,提出了一种求解应力约束拓扑优化问题的新框架.隋允康等[4,35-37]基于ICM法提出了一系列有效求解应力约束拓扑优化问题的策略,更多关于应力约束和其他力学性能约束的处理方法可以参照文献[38].荣见华等[39]将ICM法与ESO方法结合,通过每步迭代不断更新位移和应力约束,提出了一种新的应力优化思路.

近年来,品牌果蔬的优势逐渐显现。一方面,人民生活水平提高,消费者对优质果蔬产品的需求增长,提升了果蔬产品的市场影响力,使产品在激烈的市场竞争中立于不败之地,有效地增加了农民收入。另一方面,品牌化建设战略增强了果蔬产业竞争力,对于实现现代农业,推动经济社会发展有着重要的影响。山东是我国水果和蔬菜生产大省,在果蔬产业和果蔬产品品牌的发展方面积累了丰富的经验。自2000年以来,山东省果蔬产品出口额连续15年保持全国第一位,占比接近全国出口总额的1/3,素有“世界菜园”和“果篮”之称。在农业现代化发展的今天,实现果蔬品牌化是山东省的重要课题。

调查发现,常规的ESO/BESO法[8,40]研究应力约束的拓扑优化问题鲜有报道,这是因为对于考虑应力约束的优化问题而言,结构的应力值对设计变量的变化特别敏感,从而常规的仅包含0~1离散变量的ESO/BESO法求解应力约束拓扑优化问题时,会导致应力约束函数发生极度振荡现象,无法有效控制结构的应力水平.为此,本文提出一种改进的双向渐进结构优化方法,使设计变量变化量Δxe随着迭代步数的增加而逐渐减小进而稳定优化过程.采用K-S函数来凝聚局部应力约束以减少与局部应力约束相关的计算代价,并通过拉格朗日乘子法施加应力约束.且详细推导了基于BESO方法的应力约束拓扑优化模型及其灵敏度列式,最后通过三个典型拓扑优化算例验证了本文方法的有效性.

1 应力约束拓扑优化列式

1.1 拓扑优化模型

结构拓扑优化的目的是寻找一个满足某些约束条件的最优的材料分布,以使结构获得某种最优的结构行为,如结构的重量最轻或刚度最大化.本文与文献[19,28,33]一样,考虑应力和体积约束下的柔顺性最小化问题,其对应的数学列式可表示如下

 

其中为单元设计变量的集合,Ne为总的设计变量的数目;C表示结构的柔顺性目标函数;K为结构的整体刚度阵,由单元刚度阵Ke组装形成;U,F分别为结构的位移向量和载荷列阵;Ve,V0分别为第e个单元的体积和整个设计域的体积,fv为准许的材料体积分数;为每个单元的von Mises应力,为结构的最大von Mises应力及其约束限值.

1.2 插值格式

如上文所述,与柔顺性最小化问题不同的是,应力约束拓扑优化问题存在其自身的难点,如奇异最优解现象、大量局部应力约束导致的巨大计算量及应力约束的高度非线性问题等.为了克服应力约束的奇异性问题,获得清晰的拓扑构型,这里采用文献[23]的方法,对结构刚度和应力采用不同的幂指数进行惩罚.弹性模量、应力与单元密度之间的关系可定义为

试剂:37种脂肪酸甲酯标准品、十九烷酸及十九烷酸甲酯标准品购自于上海安谱科技股份有限公司;正己烷、三氟化硼-甲醇选用色谱级;三氯甲烷、甲醇、氯化镁、氢氧化钠、硼酸、盐酸、浓硫酸、石油醚(30~60 ℃)等均为分析级。

 

另外,数值研究表明,考虑敏度数的历史信息可以有效地改善优化过程的稳定性,即采用前后两轮迭代的敏度数的均值作为当前敏度数的修正值来参与迭代,其表达式为

 

1.3 全局应力度量

为了减少局部应力约束导致的计算代价,通常采用凝聚函数来形成一个全局的应力约束.较为常用的凝聚函数有P范数和K-S函数.不失一般性,本文使用K-S函数作为凝聚函数

 

(1)定义构型参数:定义容许体积分数 fv、体积进化率ER及应力约束限值σ等构型参数.

 

需要注意的是,由于式(4)中参数µ不可能取无穷大,这样会导致全局函数σKS不能很好地逼近为此,利用式(6)来修正式(5)中的约束

 

其中,修正参数

推荐理由:《大刈镰》是高建群先生倾尽心力著写且甚为看重的一部长篇小说。全书以一个退伍士兵的视角,叙述了其从故土到边防站,再到都市,种种空间身份转换过程中,所经历的一连串既浪漫又悲壮、既蛮野又孤独的故事。全书叙事大开大合,处处伏笔,多线并进,情节曲折多变又张弛有度,充满阳刚、坚韧、进取的性格,流淌着一种有力量、有美感的血液。

2 灵敏度分析

2.1 目标函数和应力约束的敏度

BESO方法从完整的设计域开始,在优化过程中结构的体积不断地减小直到获得目标体积.在每一步迭代中均以Δxe的步长来更新设计变量,实现设计变量的增加或减少.在常规的BESO方法[41-42]中,Δxe=1意味着设计变量只能取0或1两个值,在文献[43]中,取Δxe=0.02,这意味着设计变量除了取0~1值之外,还可以取其他一些中间值.本文考虑应力约束的结构拓扑优化问题,在研究中发现最大应力值对设计变量的变化特别敏感,因此通过使设计变量变化量Δxe随着迭代步数的增加而逐渐减小的策略来稳定优化过程.

 

根据链式法则很容易得到式(4)中σKS关于设计变量的敏度为

其中是小于 1 的正常数,其目的是使设计变量变化量Δxe随着迭代步数的增加而逐渐减小.Δxe初值的选取不宜太大或太小,初值太大会导致目标函数和应力约束函数震荡,太小则不利于收敛.xmin取很小的正数,作为设计变量下限以防止刚度矩阵奇异,这里取 xmin=10−4th为敏度数阈值,可通过下一次迭代的目标体积及单元敏度数的排序确定,具体过程见文献[42].

 

从上式可以看出,要计算全局应力约束函数的敏度必须先确定K-S函数对von Mises应力的导数、von Mises应力对应力分量的导数、应力分量对设计变量的导数,下面分别计算这三项.

2.2 K-S函数对von Mises应力的导数

对式 (4)中的 K-S函数关于每个单元的 von Mises应力求导可得

 

2.3 von Mises应力对应力分量的导数

式(3)中von Mises应力关于3个应力分量的导数可表示为

 

2.4 应力分量对设计变量的导数

根据式(2)可推导应力分量关于设计变量的导数

 

将式(9)~式(11)代入式(8),再结合式(6),可得

4、盆土使用疏松和排水良好的腐殖土或沙质土,将芒果种子放入土壤中,发出来嫩芽的一端朝上。最后浇透水放置有阳光照射的地方,两个星期就能长到10~18厘米高了。

 

3 拉格朗日乘子法及优化算法

3.1 拉格朗日乘子的确定

在渐进结构优化方法中,由于结构体积作为进化参数所以体积约束很容易满足.其他的约束均通过拉格朗日乘子法将约束函数引入到目标函数中,因此,修改的目标函数可表示为

 

其中λ为拉格朗日乘子.可以看出:如果则修改的目标函数等于原来的目标函数;否则,如果取λ=0,此时说明应力约束已经满足了;如果λ趋向于无穷大,这说明需要在随后的迭代中减小结构的应力来满足应力约束.

为了计算式(13)中修改的目标函数关于设计变量的灵敏度,需要先确定拉格朗日乘子的值.为了在程序中方便地实施计算,可将拉格朗日乘子重新定义为

其中参数ω的取值范围为确定合适的参数ω将使得应力约束条件满足.因此,根据当前的应力值和敏度值估算下一次迭代的应力值

 

产后产妇因妊娠期和产后内分泌紊乱,易出现精神方面症状,特别是当新生儿有畸形或性别不如意时,产妇会出现失望、情绪低落、食欲不振、睡眠不好等情况,若不进行及时的心理护理,短期会影响子宫复旧,造成大出血,远期会遗留产后抑郁症。服务人员应针对个体情况科学安慰产妇,向其讲述不良心理状态对自己身体的影响。经常了解产妇的身体状况和新生儿情况,讲解新生儿可能出现的一些生理变化,使产妇放心。同时,告诉产妇母乳喂养的好处,使产妇建立母乳喂养的信心并指导产妇采用正确的哺乳方法以及充分休息、保持心情舒畅、营养丰富的饮食,早哺乳有利于乳汁分泌。

 

其中k为当前的迭代数.根据下一次迭代的应力值及应力约束的限值采用二分法确定参数ω,具体实施过程详见文献[41].一旦获得参数ω的值,即可通过式(14)确定拉格朗日乘子的值,进而确定修改的目标函数关于设计变量的敏度

 

在渐进结构优化法中,设计变量的变化是根据敏度数的相对排序确定的[41-43],第e个单元所对应的敏度数可定义为

 

3.2 数值处理

为避免棋盘格和网格依赖性等数值不稳定问题,采用式(18)对式(17)中定义的单元敏度数过滤

 

其中权重we,i定义为

 

式中re,i为单元e和单元i之间的距离,Nr是以单元e为中心、半径为rmin的圆形邻域内的单元个数.

式中,是在第 e 个单元中心点处计算得到的包含3个应力分量的应力列阵;p1,p2分别为弹性模量和应力的惩罚参数,本文取p1=3,p2=0.5;E0,D0分别为实体材料的弹性模量、弹性矩阵,B为应变位移矩阵.式(1)中每个单元的von Mises应力可以通过下式计算

(4) 有同学建议,将本实验使用的白炽灯改为LED灯,因为白炽灯产热多,会使不同组之间的温度产生差异而影响实验结果。此建议得到了老师和同学们的一致赞同,这是因为这一改进有利于遵循____________原则。

 

利用伴随法可推导优化列式目标函数的敏度为

3.3 优化算法

改进的渐进结构优化方法求解应力约束拓扑优化问题的算法流程可归纳如下.

理论上当参数µ的值趋向于无穷大时,上式中的全局函数σKS趋向于,因此,式 (1)中的全局应力约束变为

(2)有限元分析:求解位移场和应力场,进而根据式(4)计算σKS的值.

他的妻子觉得奇怪,问他:“这是你的家,你怎么还不进来呢?”那人说:“门口没有挂鞋,这不是我的家。”他的妻子无奈地问:“你难道也不认识我了?”那个人仔细地看了看妻子,这才恍然大悟。

(3)材料体积更新:通过Vk+1=Vk(1−ER)决定下一个迭代步的材料体积,其中为材料体积进化率.一旦到达目标体积分数 fv,后续迭代中保持目标体积分数不变.

(4)灵敏度分析:根据式(7)和式(12)分别计算目标函数和应力约束函数的敏度,在此基础上根据3.1节的算法确定拉格朗日乘子的值.

(5)敏度过滤及稳定性处理:根据式(17)定义单元敏度数,然后对敏度数进行过滤,再根据式(21)修正单元敏度数.

(6)设计变量更新:通过下式来更新设计变量

 

朗读是以理解文字作品的意义为目的的一种阅读方法。阅读教学中的活动,首当其冲的应该是朗读。所谓“教学千法读为本”,即是指出声的朗读。

(7)收敛性判断:重复式(2)~式(6),直到满足下列收敛条件之一,优化过程停止迭代

(1)访问控制与病毒防范:身份认证 在医院申请企业号时就将所有人员信息导入,职工在关注企业号需通过邮件或手机号码验证才能关注成功;访问地址控制 系统通过统一出口接入外部网络。在局域网的出口处配置防火墙,实现对用户的入网访问控制,有效防止非法入侵;漏洞扫描 采用专业漏洞扫描工具,定期对网络系统及计算机系统进行漏洞扫描,加以防范处理。病毒防范 在服务器端安装服务器端防病毒系统,以提供对病毒的检测、清除、免疫和对抗能力。

 

式中,k为当前的迭代步数,µ12分别为柔顺性和最大von Mises应力的容许收敛误差,本文取µ12=1×10−6.

4 数值算例与讨论

本节通过3个平面应力问题拓扑优化算例来展示本文改进的BESO方法处理应力约束拓扑优化问题的有效性.除非特殊声明,所有算例中变量和几何参数均使用无量纲参数,完全实体材料的杨氏模量E0和泊松比分别设置为1.0和0.3,平面应力单元的厚度设为1.所有设计变量的初始值取xe=1,取参数µ=10,ζ=0.99,体积进化率ER=0.01,设计变量改变量Δxe=0.04.

4.1 算例1

考虑经典的L形梁优化问题[20,23-26,28-31],几何区域和边界条件如图1所示,结构左边顶部固支,右上角A点受载荷F=10作用,为了避免载荷作用点处的应力集中,将集中载荷平均分配到如图1所示的邻近的5个节点上.初始结构在载荷F作用下的最大的von Mises应力为7.7706.在本算例中,设置材料体积分数和应力约束限值分别为 fv=0.4,σ=6.0.结构由6400个四节点四边形单元来离散,过滤半径取rmin=4.

那晚夜夕,在巴河长满青草的堤坡上,我们和衣躺下。听着河水在脚下哗哗流着,天上繁星点点,我想起小时候我妈唱给我听,我后来又唱给狼剩儿听的那首儿歌:青石板,板石青,青石板上钉洋钉,数一数,数不清,一颗一颗亮晶晶……望着高远的夜空,我又想起小时候缠脚的事儿。缠了两天,疼得我哭爷喊娘。得幸我当时由着倔劲儿,几天不吃不喝,我妈才松了口。要不然缠了细脚儿,那我么样能走得这样远路,么样去找回我的狼剩儿啊?想到过几天就可能见到我的狼剩儿,我真恨不得冇有夜夕,都是白昼,好让我早点儿赶到阳新的木港。星星一闪一闪的,在天上眨着眼睛,我想,哪一颗会是我的狼剩儿呢?

  

图1 L形梁设计域和边界条件Fig.1 Design domain and boundary condition for L-shaped beam

图2和图3展示了本文方法获得的优化结果,其中图2是仅考虑体积约束的刚度最大化优化结果,图3是同时考虑了体积和应力约束的优化结果.

从图2可以看出,不考虑应力约束的L形梁在拐角处出现了明显的应力集中现象,而在考虑应力约束的情况下,L形梁的拐角处出现了带有弧度的圆角(图3),这说明本文方法是非常有效的,可以获得边界灰度单元很少的清晰的拓扑构型,产生有效降低应力集中效应的设计.

  

图2 不考虑应力约束L形梁的拓扑优化设计Fig.2 Optimal topology designs for L-shaped beam without stress constraint

  

图3 应力和体积约束下L形梁的拓扑优化设计Fig.3 Optimal topology designs for L-shaped beam with stress and volume constraints

图4给出了体积和应力约束下L形梁优化问题目标函数和约束函数的迭代历史.最终的柔顺度、体积分数及最大的von Mises应力值(无量纲)列于表1中.从图4可以看出,本文方法迭代过程稳健,最终设计很好地满足了体积约束和应力约束.从表1可以看出,基于体积约束下的最小柔顺性优化模型获得的最终结构的最大应力值(9.6493)大于初始结构的最大应力值(7.7706),优化后结构虽然减重了,但是L形梁拐角处的应力集中效应会使结构容易发生断裂等破坏行为;而基于式(1)描述的优化模型获得的结构的最大应力值(6.0046)比初始结构的最大应力值(7.7706)要小,这样在对结构进行减重的同时还增加了结构的强度.

 
  

图4 体积和应力约束下L形梁目标函数和约束函数的迭代历史Fig.4 Iterative histories of objective and constraint functions of L-shaped beam with volume and stress constraints

 

表1 算例1 L形梁优化结果Table 1 Optimal results for L-shaped beam in Ex.1

  

Case Compliance Volume Max stress Case 1 20255 0.4 9.6493 Case 2 22219 0.4 6.0046

4.2 算例2

第2个算例考虑L形梁右边中点B处(图1)受集中载荷作用的优化问题.在本算例中,设置材料体积分数和应力约束限值分别为 fv=0.4,σ=6.0.载荷的大小和方向以及结构的离散网格与算例1相同.为了避免应力集中效应,与算例1类似,将集中载荷均匀分布到相邻的5个网格节点上.初始结构在载荷F作用下的最大的von Mises应力为7.7725,过滤半径取rmin=3.5.

图5展示了本文方法获得的优化结果,其中图5(a)是体积约束下的刚度最大化优化结果,图5(b)是体积约束下的应力最小化优化结果,图5(c)是体积和应力约束下的刚度最大化优化结果.为了便于辨识,其优化结果分别标记为Case 1、Case 2和Case 3.此处Case 3的应力约束限值是根据Case 2的优化结果选取的.最终的柔顺度、体积分数及最大的von Mises应力值列于表2中.

  

图5 L形梁的拓扑优化设计Fig.5 Optimal topology designs for L-shaped beam

 

表2 算例2 L形梁优化结果Table 2 Optimal results for L-shaped beam in Ex.2

  

Case Compliance Volume Max stress Case 1 20008 0.4 10.1739 Case 2 38640 0.4 5.7785 Case 3 21099 0.4 5.9997

从图5和表2可知,无论是否考虑应力约束或最小化,本文改进的BESO方法均可以获得清晰的拓扑构型.考虑应力的拓扑构型与不考虑应力的拓扑构型不同,体积约束下刚度最大化的L形梁(Case 1的结果)在拐角处存在明显的应力集中效应,优化后结构的最大应力(10.1739)要比初始结构的最大应力(7.7725)要大,而考虑应力的优化设计(Case 2和Case 3的结果)能够有效降低应力集中效应.工程中的应力集中效应可能导致结构破坏事故,因此,对于设计者而言,从构型概念设计时就限制最大应力是非常有必要的.

4.3 算例3

第3个算例考虑T形梁优化问题,几何区域和边界条件如图6所示,结构左边和右边完全固支,顶部左边点受集中载荷F=10作用,为了避免载荷作用点处的应力集中,将载荷平均分配到如图6所示的邻近的5个节点上.初始结构在载荷F作用下的最大的von Mises应力为4.5633.在本算例中,设置材料体积分数和应力约束限值分别为 fv=0.4,σ=3.8,过滤半径取rmin=3.5.结构由8800个四节点四边形单元来离散.

  

图6 T形梁设计域和边界条件Fig.6 Design domain and boundary condition for T-shaped beam

图7展示了本文方法获得的优化结果,其中图7(a)是体积约束下的刚度最大化优化结果,图7(b)是体积约束下的应力最小化优化结果,图7(c)是体积和应力约束下的刚度最大化优化结果.为了便于辨识,其优化结果分别标记为Case 1,Case 2和Case 3.此处Case 3的应力约束限值也是根据Case 2的优化结果选取的.最终的柔顺度、体积分数及最大的von Mises应力值列于表3中.

事实上,教育应该教书育人,而不是教知识、育分数,教知识以应试,育分数以升学。学校是教书育人的场所,学校的功能是帮助学子成长。教育和学校要培育的应该是全面发展的人,而不是知识量大、应试能力强的人。爱因斯坦说过:“用专业知识教育人是不够的,通过专业教育,他可以成为一个有用的机器,但是不能成为一个和谐发展的人。”当代思想家雅斯贝尔斯也说过类似的话:“教育是人的灵魂的教育,而非理性知识的堆积。”

  

图7 T形梁的拓扑优化设计Fig.7 Optimal topology designs for T-shaped beam

 

表3 T形梁优化结果Table 3 Optimal results for T-shaped beam

  

Case Compliance Volume Max stress Case 1 7107.1 0.4 6.4323 Case 2 10385 0.4 3.2269 Case 3 8496.2 0.4 3.8015

从优化结果可以看出基于刚度优化的设计(图7(a))与应力相关设计(图7(b)、图7(c))的拓扑构型明显不同,体积约束下基于刚度优化的T形梁在两个拐角处出现了明显的应力集中现象,其最大应力(6.4323)比初始结构的最大应力(4.5633)要大,而考虑应力的设计能够有效降低应力集中效应.这说明本文改进的BESO方法可以有效地获得降低应力集中效应的拓扑构型设计.

本工程设有2层地下室,地下室埋深约为12m,根据GB 50007—2011《建筑地基基础设计规范》的要求,地下室部分采用防水混凝土,且防水混凝土的抗渗等级为P8。在地下室底板、外墙、顶板的后浇带处设置遇水膨胀的止水条,在地下室外墙水平施工缝处、各个设备留洞处设置止水钢板,配合建筑的各项防水构造措施可有效防止地下室的渗漏,保证地下室的安全使用,防患于未然。

5 结论

本文建立改进的BESO方法求解了应力约束的拓扑优化问题,采用K-S函数来凝聚局部应力约束以减少与局部应力约束相关的计算代价,利用拉格朗日乘子法施加应力约束,由二分法确定拉格朗日乘子的值.然后,详细推导了基于BESO方法的应力约束拓扑优化模型及其灵敏度列式,三个算例表明本文方法可有效地处理应力相关的拓扑优化问题.比较发现,考虑应力约束和不考虑应力约束的拓扑构型不同;考虑应力约束的设计能够有效降低结构关键区域的应力集中效应.

参考文献

1 Bendsoe MP,Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering,1988,71(1)∶197-224

2 Bendsoe MP,Sigmund O.Topology Optimization∶Theory,Methods and Applications.Berlin∶Springer,2003

3 Xie YM,Steven GP.A simple evolutionary procedure for structural optimization.Computers and Structures,1993,49(3)∶885-896

4 隋允康,叶红玲,彭细荣等.连续体结构拓扑优化应力约束凝聚化的ICM方法.力学学报,2007,23(4)∶554-563(Sui Yunkang,Ye Hongliang,Peng Xirong,et al.The ICM method for continuum structural topology optimization with condensation of stress constraints.Chinese Journal of Theoretical Applied Mechanics,2007,23(4)∶554-563(in Chinese))

5 Wang MY,Wang X,Guo DM.A level set method for structural topology optimization.Computer Methods in Applied Mechanics and Engineering,2003,192(1)∶227-246

6 Guo X,Zhang WS,Zhong W.Doing topology optimization explicitly and geometrically—a new moving morphable components based framework.Journal of Applied Mechanics,2014,81(6)∶081009

7 Sigmund O,Maute K.Topology optimization approaches.Structural and Multidisciplinary Optimization,2013,48(4)∶1031-1055

8 谢亿民,黄晓东,左志豪等.渐进结构优化法(ESO)和双向渐进结构优化法(BESO)的近期发展.力学进展,2011,41(4)∶462-471(Xie Yiming,Huang Xiaodong,Zuo Zhihao,et al.Recent developments of evolutionary structural optimization(ESO)and bidirectional evolutionary structural optimization(BESO)methods.Advances in Mechanics,2011,41(4)∶462-471(in Chinese))

9 张卫红,郭文杰,朱继宏.部件级多组件结构系统的整体式拓扑布局优化.航空学报,2015,36(6)∶2662-2669(Zhang Weihong,Guo Wenjie,Zhu Jihong.Integrated layout and topology optimization design of multi-component systems with assembly units.Acta AeronauticaetAstronauticaSinica,2015,36(6)∶2662-2669(inChinese))

10 龙凯,王选,韩丹.基于多相材料的稳态热传导结构轻量化设计.力学学报,2017,49(1)∶359-366(Long Kai,Wang Xuan,Han Dan.Structural light design for steady heat conduction using multimaterial.Chinese Journal of Theoretical and Applied Mechanics,2017,49(1)∶359-366(in Chinese))

11 王选,胡平,祝雪峰等.考虑结构自重的基于 NURBS插值的3D拓扑描述函数法.力学学报,2016,48(4)∶1437-1445(Wang Xuan,Hu Ping,Zhu Xuefeng,et al.Topology description function approach using NURBS interpolation for 3Dstructures with selfweight loads.Chinese Journal of Theoretical and Applied Mechanics,2016,48(4)∶1437-1445(in Chinese))

12 隋允康,彭细荣.求解一类可分离凸规划的对偶显式模型 DPEM 方法.力学学报,2017,49(3)∶1135-1144(Sui Yunkang,Peng Xirong.A dual explicit model based DPEM method for solving a class of separable convex programming.Chinese Journal of Theoretical and Applied Mechanics,2017,49(3)∶1135-1144(in Chinese))

13 陈文炯,刘书田,张永存.基于拓扑优化的自发热体冷却用植入式导热路径设计方法.力学学报,2016,48(1)∶406-412(Chen Wenjiong,Liu Shutian,Zhang Yongcun.Optimization design of conductive pathways for cooling a heat generating body with high conductive inserts.Chinese Journal of Theoretical and Applied Mechanics,2016,48(1)∶406-412(in Chinese))

14 Guo X,Zhang WS,Zhang J,et al.Explicit structural topology optimization based on moving morphable components(MMC)with curved skeletons.Computer Methods in Applied Mechanics and Engineering,2016,310∶711-748

15 Cheng GD,Jiang Z.Study on topology optimization with stress constraints.Engineering Optimization,1992,20(1)∶129-148

16 Cheng GD,Guo X.ε-relaxed approach in structural topology optimization.Structural Optimization,1997,13(4)∶258-266

17 Duysinx P,Bendsoe MP.Topology optimization of continuum structures with local stress constraints.International Journal for Numerical Methods in Engineering,1998,43(6)∶1453-1478

18 Paris J,Navarrina F,Colominas I,et al.Topology optimization of continuum structures with local and global stress constraints.Structural and Multidisciplinary Optimization,2009,39(4)∶419-437

19 Bruggi M,Venini P.A mixed FEM approach to stress-constrained topology optimization.International Journal for Numerical Methods in Engineering,2008,73(10)∶1693-1714

20 Verbart A,Langelaar M,Van Keulen F.A unifie aggregation and relaxation approach for stress-constrained topology optimization.Structural and Multidisciplinary Optimization,2017,55(1)∶663-679

21 HolmbergE,TorstenfeltB,KlarbringA.Stressconstrainedtopology optimization.Structural and Multidisciplinary Optimization,2013,48(1)∶33-47

22 Rong JH,Xiao TT,Yu LH,et al.Continuum structural topological optimizations with stress constraints based on an active constraint technique.International Journal for Numerical Methods in Engineering,2016,108(4)∶326-360

23 Le C,Norato J,Bruns T,et al.Stress-based topology optimization for continua.Structural and Multidisciplinary Optimization,2010,41(4)∶605-620

24 Yang RJ,Chen CJ.Stress-based topology optimization.Structural Optimization,1996,12(2-3)∶98-105

25 Luo YJ,Kang Z.Topology optimization of continuum structures with Drucker–Prager yield stress constraints.Computers and Structures,2012,90∶65-75

26 Luo YJ,Wang MY,Kang Z.An enhanced aggregation method for topology optimization with local stress constraints.Computer Methods in Applied Mechanics and Engineering,2013,254∶31-41

27 Paris J,Navarrina F,Colominas I,et al.Block aggregation of stress constraints in topology optimization of structures.Advances in Engineering Software,2010,41(2)∶433-441

28 Cai SY,Zhang WH.Stress constrained topology optimization with free-form design domains.Computer Methods in Applied Mechanics and Engineering,2015,289∶267-290

29 Wang MY,Li L.Shape equilibrium constraint∶A strategy for stressconstrained structural topology optimization.Structural and Multidisciplinary Optimization,2013,47(2)∶335-352

30 Zhou MD,Sigmund O.On fully stressed design and p-norm measures in structural optimization.Structural and Multidisciplinary Optimization,2017,56(2)∶731-736

31 Guo X,Zhang WS,Zhong W.Stress-related topology optimization of continuum structures involving multi-phase materials.Computer Methods in Applied Mechanics and Engineering,2014,268∶632-655

32 Xia Q,Shi T,Liu S,et al.A level set solution to the stress-based structural shape and topology optimization.Computers and Structures,2012,90∶55-64

33 Guo X,Zhang WS,Wang MY,et al.Stress-related topology optimization via level set approach.Computer Methods in Applied Mechanics and Engineering,2011,200(47)∶3439-3452

34 Cai SY,Zhang WH,Zhu JH,et al. Stress constrained shape and topology optimization with fi ed mesh∶A B-spline finit cell method combined with level set function.Computer Methods in Applied Mechanics and Engineering,2014,278∶361-387

35 隋允康,张学胜,龙连春.应力约束处理为应变能集成的连续体结构拓扑优化.计算力学学报,2007,24(3)∶602-608(Sui Yunkang,Zhang Xuesheng,Long Lianchun.The ICM method of structural topology optimization with stress constraints approached by the integration of strain energies.Chinese Journal of Computational Mechanics,2007,24(3)∶602-608(in Chinese))

36 隋允康,边炳传.屈曲与应力约束下连续体结构的拓扑优化.工程力学,2008,25(6)∶6-12(Sui Yunkang,Bian Binchuan.Topology optimization of continuum structures under bucking and stress constraints.Engineering Mechanics,2008,25(6)∶6-12(in Chinese))

37 隋允康,铁军.结构拓扑优化ICM显式化与抛物型凝聚函数对于应力约束的集成化.工程力学,2010,27(增刊I)∶224-237(Sui Yunkang,Tie Jun.The ICM explicitation approach to structural topology optimization and the integrating approach to stress constraints based on the parabolic aggregation function.Engineering Mechanics,2010,27(Sup.issue I)∶224-237(in Chinese))

38 隋允康,叶红玲.连续体结构拓扑优化的ICM方法.北京:科学出版社,2013(Sui Yunkang,Ye Hongling.Continuum Topology Optimization Methods ICM.Beijing∶Science Press,2013(in Chinese))

39 荣见华,葛森,邓果等.基于位移和应力灵敏度的结构拓扑优化设计.力学学报,2009,41(4)∶518-529(Rong Jianhua,Ge Sen,Deng Guo,et al.Structural topology optimization based on displacement and stress sensitivity analysis.Chinese Journal of Theoretical Applied Mechanics,2009,41(4)∶518-529(in Chinese))

40 Munk DJ,Vio GA,Steven GP.Topology and shape optimization methods using evolutionary algorithms∶A review.Structural and Multidisciplinary Optimization,2015,52(2)∶613-631

41 Huang X,Xie YM.Evolutionary topology optimization of continuum structures with an additional displacement constraint.Structural and Multidisciplinary Optimization,2010,40(1)∶409-416

42 Huang X,Xie YM.Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method.Finite Elements in Analysis and Design,2007,43(12)∶1039-1049

43 Huang X,Li Y,Zhou SW,et al.Topology optimization of compliant mechanisms with desired structural stiffness.Engineering Structures,2014,79∶13-21

 
王选,刘宏亮,龙凯,杨迪雄,胡平
《力学学报》 2018年第02期
《力学学报》2018年第02期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号