更全的杂志信息网

NUMERICAL SIMULATIONS FOR A VARIABLE ORDER FRACTIONAL CABLE EQUATION∗

更新时间:2016-07-05

1 Introduction

The cable equation has been recently treated by numerous of authors and is found to be a useful approach for modeling neuronal dynamics.The cable equation can be deduced from the Nernst-Planck equation for electrodiffusion in smooth homogeneous cylinders and it was investigated for modeling the anomalous diffusion in spiny neuronal dendrites.Henry et al[4]derived a fractional cable equation from the fractional Nernst-Planck equations to model anomalous electrodiffusion of ions in spiny dendrites which is similar to the traditional cable equation except that the order of derivative with respect to the time or space is fractional.

Fractional calculus is a mathematical branch investigating the properties of integrals and derivatives of non-integer orders.The applications of fractional calculus occur in several fields,such as physics,Engineering, fluid flow,viscoelasticity,and control theory of dynamical systems(see[1,7,8,13,16,19,21–23]).The variable order calculus is a natural extension of the constant order(integer or fractional)calculus[24,25].The concepts of fractional differentiation and integration of variable order fractional are suggested by Samko and Ross in[20].There are several proposed definitions for the variable order fractional derivative definitions;for more details,see[5,6,9–11].In general,the variable-order fractional derivative is an extension of constant-order fractional derivative,where maybe the order function depends on one parameter,such as space or time,or system of other parameters[20,24].The variable order differentials have been studied in several applications such as control of a nonlinear viscoelasticity oscillator and the motion of particles suspended in a viscous fluid with drag force determined;for more details,see[17,18]and the references cited therein.

The main goal of this work is to solve variable order cable equation numerically by an accurate numerical method based on Crank-Nicolson method.In what follows,we give the definition of Riemann-Liouville variable order fractional derivatives and Grünwald-Letnikov variable order fractional derivatives,which will be used in our study.

Definition 1.1([17]) The Riemann-Liouville variable order fractional derivative is defined as

影响经济转型升级的因素很多,水资源作为一种最重要最基本的生产生活资源,水生态作为生态环境的核心组成,是影响人民生产生活水平和幸福感的重要因素,因此,通过水资源管理,提高用水效率,改善水环境和水生态,保障供水安全,也必然将成为推动经济转型升级的关键因素。水资源时空分布不均、与生产力布局不相匹配,水环境压力巨大,既是广东现阶段的突出水情,也是要长期面对的基本省情。当前和今后一个时期,广东省将以贯彻落实最严格水资源管理制度为抓手,全力扼守水资源管理“三条红线”,切实提高水资源管理能力和水平,为广东实现“三个定位、两个率先”提供有力支撑。

①2012年全国农民工达到了2.626 1亿,成为中国产业大军,同时拉动了农村居民人均纯收入达7 917元的效益。目前农村人口6.422 2亿,农民总纯收入5.08万亿元,由于农业收入占农民纯收入27%(2011年数据),并逐年降低,农业收益已不再是农民主要收入来源,从而农民就不积极投资坑塘建设。

Definition 1.2([14])The Grünwald-Letnikov variable order fractional derivative is defined as

(4)为了广纳人才,扩大“带头人”的选择范围,选出能真正改变一村经济面貌的“带头人”作为对农村的人才支援,可以采取与“援藏”一样的政策力度,让来自农村的外出务工人员、大学生、公务员都可回原藉参加选举.大学生胜选者可保留学藉,任职结束后仍可选择继续学习,任职经历视同社会实践;公务员胜选者可保留原职,可连续计算工龄,任职结束后仍可回原单位工作.胜选者作为准公职人员管理,根据任职业绩考核计酬.任职能力与政绩表现突出者可直接招录为县、乡级公务员,以拓展农村经济“带头人”的政治前途,激励这些人为一方村民奉献自己的聪明才智.鼓励退休公职人员回乡参加竞选,发挥余热,勇当发展农村经济的带头人.

例如:在进行小学数学的有关几何图形相关知识的学习过程中,老师就要对学生积极进行提问,促进学生的合作学习。比如,在为学生进行了几何图形的初步讲解之后,老师就要对学生进行提问:“学生们进行几何图形的学习对我们会有什么样的帮助?在我们的生活中又有什么样的用处呢?”然后让学生以小组的形式进行讨论,注意每一组中都要保证组员之间的成绩以及性格都有所不同。然后老师在组织学生进行几何图形的制作,让他们进一步掌握相关内容。这样的学习方式,促进学生的个性化发展,也有利于学生的共同进步,有利于小学数学高效课堂的构建。

张同波:面对激烈的市场竞争,企业必须拥有关键的核心技术,并不断地打造新的核心技术,始终保持领先一步的态势。为实现技术创新从一次创新向持续创新转变,单一产品创新向系列产品创新转变,个人创新向集体创新转变。新兴铸管着眼于建立自己的技术开发体系,坚持走“以企业为主体、以市场为导向、产学研相结合”之路,借助国内专家力量,共同攻克技术难关;建立以公司技术中心和研究院为主的技术开发、产品开发组织体系,保证产品结构调整的顺利进行。

The layout of this article is as follows:In Section 2,the variable order fractional cable equation is discretizated based on Crank-Nicolson method and shifted Grünwald formula;In Section 3,the stability analysis of the proposed method is discussed;In Section 4,linear and nonlinear numerical examples of variable order fractional cable problem are considered to show the accuracy of the scheme.Conclusions are given in Section 5.

2 Crank-Nicolson Scheme for Solving Variable Order Fractional Cable Equation

In this section,we combine two schemes Crank-Nicolson method and shifted Grünwald formula to solve the variable order fractional cable equation[2]on the form:

where n−1<α(x)<n.

由于人们对自由软件的渴望,要求提供系统源码层次上的支持,而Linux操作系统的发展正好适应了这一需求,Linux操作系统不仅具有开放源代码、系统内核小、效率高、内核网络结构完整的特点,而且裁减后的系统很适合嵌入式系统应用程序的开发。

where 0 < β(x,t),α(x,t)< 1,µ > 0 is a constant andis the variable order fractional derivative defined by the Riemann-Liouville operator of order 1−γ(x,t),where γ(x,t)is equal to β(x,t)or α(x,t).

Before constructing the proposed scheme,let us consider the uniform grid points of the space and time are defined as follows:respectively,where M and N are integers such that h=L/N,τ=tmax/M.Equation(2.1)can be written at the grid points(xn,tm)as follows:

whose elements are1,2,···,N −1.This strictly diagonally dominant system is nonsingular and can be easily solved to obtain U for any right-hand side b.Consequently solving this system of equations give an approximation to the numerical method given in Equations(2.12)–(2.14).

The Riemann-Liouville fractional partial derivative of order 1−γn,mcan be written using the Grünwald-Letnikov definition in the following form[15]:

The right-hand side of equation(2.4)can be approximated from[14]by

Consequently,Equation(2.4)leads to

It is well known that,the formula in the above equation is not always unique because of the fact there are numerous choices for the coefficients that lead to approximations of various orders p[12,14].The definition of for a first order accuracy(that is,p=1)is given by

Lemma 2.1([3])If,for n=1,2,···,N,m=1,2,···,M,l=0,1,···,the coefficientssatisfy:

Approximatein Equation(2.1)by backward difference quotient in the t-direction,that is,

and the Crank-Nicolson method is used to approximate the second derivative in the right hand side of Equation(2.1),that is,the average of the explicit scheme and the implicit scheme evaluated at the previous and current time steps respectively,then one gets

Also,if f(x,t)has first-order continuous derivative,then

徐宏勋算了一笔账,经过多年的发展,特别是2013年长沙绕城高速公路开通后,浔龙河村的交通优势凸显出来。从浔龙河村到长沙绕城高速公路长龙收费站8公里,车程8分钟,走黄兴大道到长沙县城星沙15分钟车程,到黄花国际机场、长沙市区、长沙高铁南站车程均在30分钟以内。

Plugging Equations(2.7)–(2.9)into Equation(2.1),we have

1.2.2 缩唇呼吸 以鼻吸气,缩唇呼气,呼气时将口唇缩成吹口哨状,使气体通过缩窄的口型缓缓呼出,缩唇程度以不感费力为适度,一般吸气时间为2 s,呼气时间逐渐延长或保持到10 s以上。每天进行3次,每次训练10~15 min。

Applying the Grünwald-Letnikov definition for fractional variable-order given in(2.6)to Equation(2.10),we obtain

where

(4)放在驾驶台海图桌里的海图都必须全部更改,当前航次所用海图临时通告和预告,NAVTEX 及EGC航行警告必须完全改正。

After preforming some simplification,Equation(2.11)is written as

If we assume thatthen Equations(2.12)–(2.14)can be expressed as a matrix form:

where C0,C1,···,Cm−2;A;B are matrices of order(N − 1)× (N − 1).The matrix A is a strictly diagonally dominant matrix

旅游地产行业属于旅游业和房地产业结合的重要产业,但这个行业在宾阳县还处于发展阶段,我国目前还没有出台关于旅游地产的相关的法律法规,宾阳县政府关于旅游地产的政策仍然不够完善,宾阳县的旅游地产开发具有很强的政策性,需要政府进行引导规划,但政府政策有时也不大完善,在实施过程中也会出现大量的问题,严重影响宾阳县旅游地产的发展。

3 Stability Analysis

In this section,we analyze the stability analysis of the proposed scheme given in(2.14)for the free force case.

Theorem 3.1The Crank-Nicolson discretization with the shifted Grünwald estimation for the variable order fractional cable equation defined in(2.1)is unconditionally stable for 0< β(x,t)<1 and 0< α(x,t)<1.

Proof Let us define

then Equation(2.14)can be rewritten as If we assume as in the von Neumann stability procedure that then we obtain

Divided by eiqnh

subject to

Suppose e =cosθ+isin θ,then we obtain

Simplifying the above equation,once we get

and

From Equation(3.1)and Lemma 2.1,becausefor all n,m,α,β,h and q,it follows that

社会福利政策的合法性既包括政治层面的正当性,即社会福利政策是否体现公民意志、维护公民利益,也包括社会福利政策本身、制定过程是否符合具体法律规范的规定。中央和地方社会福利政策、各级政府制定的社会福利政策法规以及半官方的社会团体制定的社会福利政策,都必须纳入合法化的范围。合法性是评价社会福利政策质量的根本标准,违法的社会福利政策从政策颁布时候就是无效的,而且自始至终无效。

Thus,for n=2,the last inequality implies

Repeating the process until ξl ≤ ξl−1,l=1,2,···,m − 1,we have

This shows that inequalities(3.2)and(3.3)imply that ξm ≤ ξm−1 ≤ ξm−2 ≤ ···≤ ξ1 ≤ ξ0.Thus,which entailsand so the proposed scheme is unconditionally stable.

4 Numerical Experiments

In this section,we illustrate the applicability of the proposed technique discussed in the previous section for solving cable equation of linear and nonlinear variable-order fractional partial differential equations and compare our results with exact solutions.

where[x/h]means the integer part of x/h andare the normalized Grünwald weightswhich are defined by

Example 4.1 Consider the following initial-boundary problem of the variable-order fractional cable equation

on a finite domain 0<x<1,with 0≤t≤tmax.

The source term is given by

the initial and boundary conditions are u(x,0)=0;u(0,t)=u(1,t)=0,and the exact solution is u(x,t)=t2sin(πx).

本研究结果显示:中药汤剂组及中药汤剂+穴位注射组在耳鸣疗效方面(近期、远期)优于中成药组(P<0.05),而中药汤剂组及中药汤剂+穴位注射组比较无明显差异(P>0.05),本课题设计之初预期疗效中药汤剂+穴位注射组优于或等于中药汤剂组,中药汤剂组优于中成药组,完全符合预期。研究分组设计出于大多数患者畏针、晕针,对针灸的依从性较中药治疗差,故分组中没有单设针灸治疗组。且预期结果中如出现中药汤组和中药汤剂+穴位注射组疗效无差异情况,则指导我们以后治疗中可单纯用口服中药汤剂治疗。

In Table 1,we list the maximum absolute errors between exact and approximate solutions using the proposed approach with different choices of constant values of α and β.Moreover,Table 2 shows the maximum absolute errors at t=1,using different values of β(x,t)and α(x,t).

Table 1 The maximum absolute error of the proposed approach using different values of constant β and α at N=10 and M=15

?

Table 2 The maximum absolute error of the proposed approach using different values of β(x,t)and α(x,t)

?

Figures 1,3,5 and 7 show the graphs of exact and numerical solutions of the proposed approach at t=1,with various values of α(x,t), β(x,t)and τ,h.Moreover,Figures 2,4,6 and 8 show 3D-drawing of the absolute error of exact and approximate solutions with different values of α(x,t), β(x,t)and τ,h.From the results presented in Tables 1,2 and all figures,it is clear that the proposed approach provides accurate numerical solutions coincide closely with the exact solutions.

Example 4.2 Consider the following initial-boundary problem of the variable-order fractional nonlinear cable equation,

产前胎儿心脏超声不受胸骨上窝及胸骨旁限制,并能显示永存左上腔静脉全程走行及左无名静脉的走行情况。三血管气管切面在左无名静脉超声产前筛查上腔静脉先天变异具有较高的特异性图像表现,诊断准确性高,可作为筛查先天上腔静脉变异的首选检查方法。

on a finite domain 0<x<1,with 0≤t≤tmax.The source term is given by

the initial and boundary conditions are u(x,0)=0;u(0,t)=t2 and u(1,t)=et2,and the exact solution is u(x,t)=ext2.

Figure 1 The behavior of the numerical and exact solutions at β(x,t)=5xt−3,α(x,t)=and τ=h=1/30

Figure 2 The graph of the absolute error at β(x,t)=5xt−3,α(x,t)=and τ=h=1/30 for Example 4.1

Figure 3 The behavior of the numerical and exact solutions at β(x,t)=5xt−3,α(x,t)=,and τ=h=1/50

Figure 4 The graph of the absolute error at β(x,t)=5xt−3,α(x,t)=and τ=h=1/50 for Example 4.1.

Figure 5 The behavior of the numerical and exact solutions at β(x,t)=α(x,t)=and τ=h=1/30

Figure 6 The graph of the absolute error at β(x,t)=and τ=h=1/30 for Example 4.1

Table 3 shows the maximum absolute error for Example 4.2 at different values of β(x,t),α(x,t),N and M.The graphs of the absolute error between the exact and the approximate solutions forτ=h=1/30 are shown in Figures 9 and 10,respectively.

Table 3 The maximum absolute error of the proposed approach using different values of β(x,t)and α(x,t)

?

Figure 7 The behavior of the numerical and exact solutions at β(x,t)=α(x,t)=and τ=h=1/50

Figure 8 The graph of the absolute error at β(x,t)=and τ=h=1/50 for Example 4.1

Figure 10 The graph of the absolute error at β(x,t)=and τ=h=1/30 for Example 4.2

Figure 9 The graph of the absolute error at β(x,t)=and τ=h=1/30 for Example 4.2

5 Conclusions

In this article,we have presented a new technique for solving the variable-order cable equation.The proposed technique is based on Crank-Nicolson method with shifted Grünwald estimation for variable-order fractional derivatives.Special attention is given to discuss the stability of the proposed technique.Finally,some numerical examples are given to clarify the validity and accuracy of the proposed technique.The obtained numerical results are compared with exact solutions.The numerical results show that the proposed technique is accurate for solving such type of fractional differential equations.All numerical computations were performed in MATLAB software version R2012a.

References

[1]Benson A D,Wheatcraft W S,Meerschaert M M.The fractional-order governing equation of Lévy motion.Water Resour Res,2000,36(6):1413–1424

[2]Chang C M,Liu F,Burrage K.Numerical analysis for a variable-order nonlinear cable equation.J Comput Appl Math,2011,236(2):209–224

[3]Chen Chang-Ming,Liu F,Anh V,Turner I.Numerical schemes with high spatial accuracy for a variableorder anomalous subdiffusion equation.SIAM J Sci Comput,2010,32(4):1740–1760

[4]Henry I B,Langlands M A T,Wearne L S.Fractional cable models for spiny neuronal dendrites.Phys Rev Lett,2008,100:128103pp

[5]Ingman D,Suzdalnitsky J.Control of damping oscillations by fractional differential operator with timedependent order.Comput Methods Appl Mech Eng,2004,193(52):5585–5595

[6]Ingman D,Suzdalnitsky J,Zeifman M.Constitutive dynamic-order model for nonlinear contact phenomena.J Appl Mech,2000,67(2):383–390

[7]Kilbas A A,Srivastava M H,Trujillo J J.Theory and applications of fractional differential equations.San Diego:Elsevier,2006

[8]Langlands M A T,Henry I B,Wearne L S.Fractional cable equation models for anomalous electrodiffusion in nerve cells:in finite domain solutions.J Math Biol,2009,59(6):761–808

[9]Liu F,Zhuang P,Anh V,Turner I.A fractional-order implicit difference approximation for the space-time fractional diffusion equation.ANZIAM J,2006,47:C48–684

[10]Lorenzo C F,Hartley T T.Variable order and distributed order fractional operators.Nonlinear Dyn,2002,29:57–98

[11]Lorenzo C F,Hartley T T.Initialized fractional calculus.Internat J Appl Math,2000,3(3):249–265

[12]Lubich C.Discretized fractional calculus.SIAM J Math Anal,1986,17:704–719

[13]Nagy A M,Sweilam N H.An efficient method for solving fractional Hodgkin-Huxley model.Phys Lett A,2014,378:1980–1984

[14]Podlubny I.Fractional differential equations.San Diego:Academic Press,1999

[15]Podlubny I,El-Sayed A M A.On two definitions of fractional derivatives.Slovak Academy of Sciences,Institute of Experimental Physics,1996:ISBN 80-7099-252-2

[16]Quintana-Murillo J,Yuste B S.An explicit numerical method for the fractional cable equation.Int J Differential Equations,2011,2011:12pp

[17]Ramirez L E S,Coimbra C F M.On the selection and Meaning of variable order operators for dynamic modeling.Int J Differ Equat,2010,2010:16pp

[18]Ramirez L E S,Coimbra C F M.A variable order constitutive relation for viscoelasticity.Ann Phys,2007,16(7/8):543–552

[19]Reynolds A.On the anomalous diffusion characteristics of membrane bound proteins.Phys Lett A,2005,342:439–442

[20]Samko S G,Ross B.Integration and differentiation to a variable fractional order.Integral Transforms Spec Funct,1993,1(4):277–300

[21]Sweilam N H,Khader M M,Nagy A M.Numerical solution of two-sided space-fractional wave equation using finite difference method.J Comput Appl Math,2011,235(8):2832–2841

[22]Sweilam N H,Nagy A M.Numerical solution of fractional wave equation using Crank-Nicolson method.World Appl Sci J,2011,13(Special Issue of Applied Math):71–75

[23]Sweilam N H,Nagy A M,El-Sayed Adel A.Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation.Chaos Solitons Fractals,2015,73:141–147

[24]Sweilam N H,Nagy A M,Assiri T A,Ali N Y.Numerical simulations for variable-order fractional nonlinear differential delay equations.J Fract Calc Appl,2015,6(1):71–82

[25]Sweilam N H,Assiri T A.Numerical simulations for the space-time variable order nonlinear fractional wave equation.J Appl Math,2013,2013:7pp

A. M. NAGY,N. H. SWEILAM
《Acta Mathematica Scientia(English Series)》2018年第2期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号