更全的杂志信息网

GLOBAL DYNAMICS OF A PREDATOR-PREY MODEL WITH PREY REFUGE AND DISEASE∗†

更新时间:2016-07-05

1 Introduction

Predator-prey model is one of the basic models between different species in nature.These models have been studied extensively and many excellent results have been obtained(see[1,2]).On the other hand,the effect of disease in ecological system is an important topic from mathematical as well as ecological point of view.After the work of Kermack-McKendrick[3]on SIRS(susceptible-infected-removedsusceptible)systems,many authors have investigated the dynamical behavior of epidemiological models.Chattopadhyay and Arino[4]proposed a predator-prey epidemiological model with disease spreading in prey.They assumed that the sound prey population grows according to a logistic law involving the whole prey population,and discussed the positivity,uniqueness,boundedness of the solutions and the existence of supercritical Hopf bifurcation.Haque et al[5]investigated a Lotka-Volterra type predator-prey model with a transmissible disease in the predator species.They aussumed that the sound and infected predators can hunt the prey and studied the stability of system.

移栽机的核心部件是栽植机构,是保证秧苗栽植质量、提高工作效率的重要部件,它反映了移栽机的发展过程和进步水平。本文研究一种新型悬杯式移栽机的栽植机构作为栽植系统的研究基础,针对其在进行移栽作业时存在的一些问题,如移栽质量不稳定和钵苗直立度不能完全达到农业技术要求等,对栽植机构进行分析和改进,以寻求最优的结构形式和工作参数。

Sun and Yuan[6]proposed the following predator-prey model with disease in the predator

当前的药物治疗有一些局限性,主要在于起效缓慢和对不少抑郁症患者无效。解决难治性抑郁症的一个策略是研发和使用非典型抗抑郁药物。另外,NMDA受体的阻断剂——氯胺酮的快速抗抑郁效果的发现及相关研究,不仅提供了崭新的抗抑郁疗法,也极大的促进了抑郁症发作机制的病理学研究,靶向谷氨酸能的药物有望成为第三代抗抑郁药,解决当前药物在起效时间、有效性等方面存在的问题。

where x(t),S(t)and I(t)represent the densities of the prey,susceptible(sound)predator and the infected predator population at time t,respectively.They assumed that there is a spread of disease in predator and only the susceptible predators have ability to capture prey.They investigated the boundedness of solution and global asymptotical stability of the equilibriums.

On the other hand,prey species makes use of refuges to decrease predation risk,here refuge means a places or situations where predation risk is somehow reduced.Ma et al[7]studied the following predator-prey model with prey refuges and a class of functional responses

where the term φ(X)represents the functional response of the predator population.They obtained the local asymptotical stability of equilibrium point and showed that the refuges used by prey can increase the equilibrium density of prey population but decrease that of predator.Ma et al.[8]further studied the influence of prey refuge and density dependent of predator species on the traditional Lotka-Volterra model.Huang,Chen and Li[9]studied the influence of prey refuge on a predatorprey model with Holling type III response function.In[10],a global analysis of a Holling type II predator-prey model with a constant prey refuge was presented.Ma et al[11]and Chen,Chen and Wang[12]studied a Lotka-Volterra predatorprey model incorporating a prey refuge and predator mutual interference.For more details in this direction,please see[13,14].

However,there are still seldom scholars investigating the predator-prey model with prey refuge and disease in predator.More precisely,we study the global stability of the following model

where x(t),S(t)and I(t)represent the densities of the prey,susceptible(sound)predator and the infected predator population at time t,respectively with initial conditions x(0)>0,S(0)>0,I(0)>0.All the parameters are positive constants and 0<m<1.The disease incidence follows the simple law of mass action incidence βS(t)I(t)with β being the transmission coefficient;d1 ≤ d2;mx(t)is the capacity of a refuge at time t.

届时,对于铁路施工图审核工作,可推行全程电子化。如果能实现咨询单位内部、外部(主要是设计单位)线上协同操作,将大幅提高工作效率。与此同时,也应注重信息安全,如投标子系统中的协同审阅,应加强信息保密。可考虑引入银行系统级别的信息保护方案,有效保证信息安全。

The organization of this paper is as follows.In Section 2,we study the stability of the equilibriums of system(1.3).In Section 3,numerical simulation is presented to illustrate the feasibility of our main results.In the last section,we give a brief discussion.

2 Main Results

In this section,we investigate the local and global stability of system(1.3).

Similar to the proof of[6],we have the following lemma.

Lemma 2.1 All solutions of system(1.3)with a positive initial data will remain positive and uniformly bounded.

The proofs of(ii)and(iii)are similar to that of(i)and we omit the detail here.This completes the proof of Proposition 2.1.

Thus V(t)is nonincreasing.From Lemma 2.1,(x−x1)2and I are bounded.On the other hand,it is easy to see that x(t)and I(t)are bounded.Therefore,(x − x1)2 and I are uniformly continuous on[0,+∞).Integrating both sides of(2.8)over the interval[0,+∞),we have

holds,then system(1.3)has a disease-free equilibrium E2(x1,S1,0),where x1=

Further,for the unique endemic-coexistence equilibrium E(x,S,I)of system(1.3),x,S and I satisfy the following equations

Ifequation(2.5)has two positive rootsand z2=By calculation,we have0 and0.HenceThen,we have:

hold,then x,S and I are positive and satisfy

Letbe an arbitrary equilibrium of system(1.3).Then the Jacobian matrix about is given by

It is easy to prove that the equilibrium E0(0,0,0)is always unstable.

For the predator-extinction equilibrium E1(K,0,0),the Jacobian matrix is given by

采用SPSS 19.0统计学软件对数据进行处理,计量资料以“±s”表示,采用t检验。以P<0.05为差异有统计学意义。

Hence,if≥1,then E1(K,0,0)is locally asymptotically stable for any 0<m<1.If<1,then E1(K,0,0)is locally asymptotically stable if and only if 1−m<

泰国公立崇华新生华立学校历史悠久,建校已逾百年。1901年,孙中山先生的挚友郑智勇(二哥丰)会同清迈知名人士蔡顺喜、翁耀福、廖永源等,在清迈创办第一所中文学校——“华英学校”(崇华新生华立学校前身)。1974年,崇华新生华立基金会注册成功,崇华新生华立学校成为由清迈侨社、侨团共同经营、管理的公立学校。1981年,学校从清迈市区迁至10千米外的南郊,到1999年,成为泰国北部最大的华校。

For the disease-free equilibrium E2(x1,S1,0),the Jacobian matrix is given by

Then the characteristic equation is

By calculation,βS1−d2< 0 is equivalent to cd2(1−m)2−rβ(1−m)+>0.Hence,the disease-free equilibrium E2(x1,S1,0)is locally asymptotically stable if and only if cd2(1−m)2−rβ(1−m)+>0.

It follows from Lemma 2.2 that e(1−m)K−d1<0.Then V(t)<0 for all(x,S,I)≠(K,0,0).By the Lyapunov-LaSalle invariance principle[15],E1(K,0,0)is globally asymptotically stable.This completes the proof of Lemma 2.3.

Then the characteristic equation is

whereNoting that 0,by Routh-Hurwitz criterion,the unique endemic-coexistence equilibrium E(x,S,I)is always locally asymptotically stable if and only if Eexists.

Then we have the following result.

Lemma 2.2

(i)The trivial equilibrium E0(0,0,0)is unstable.

(ii)If≥1,then the predator-extinction equilibrium E1(K,0,0)is always locally asymptotically stable,but the disease-free equilibrium E2(x1,S1,0)and the unique endemic-coexistence equilibrium E(x,S,I)do not exist.

(iii)If<1,then the predator-extinction equilibrium E1(K,0,0)is locally asymptotically stable if 0<1−m<.The disease-free equilibrium E2(x1,S1,0)is locally asymptotically stable ifThe unique endemic-coexistence equilibrium E(x,S,I)is locally asymptotically stable if 0<1−m<

By the definition of x,we have x < K.It follows from the second equation of(2.2)that 1−m>,that is,the existence of E(x,S,I)implies that 1−m> holds.

De fine

2.4.3 固定不牢。导管安置后,固定胶布因患者的汗液和分泌物污染而失去粘性,护士未及时更换,导致管道滑脱。

Let∆1=rβ(rβ −).

If rβ < ,then H(z)>0 for all<z<1.

浙江省水功能区划修编案例分析与关键问题探讨…………………………………………………… 蔡临明(17.44)

If rβ=and 0<,then H(z)>0 for

When<1,then H(z)>0 for all

From the above equation,if

很多企业在二次创业阶段会遇到一些问题。这个阶段最根本的问题是组织能力与战略发展的缺口,这是必然的发展缺口。因为经营增长拉动管理,管理滞后于经营半步。那么,怎么去解决组织能力和战略发展的缺口呢?要提升组织能力,主要是四个方面:

(i)If z2<1,then H(z)>0 for<z<z1and z2<z<1,H(z)<0 for z1<z<z2.

(ii)If z1<1≤z2,then H(z)>0 for<z<z1,H(z)<0 for z1<z<1.

(iii)If z1≥1,then H(z)>0 for<z<1.

By analyse,we have the following results.

Proposition 2.1 If rβ > and<1,then

(i)z2 < 1 if and only if

(ii)z1<1≤z2if and only if one of the following conditions hold:

(ii.a)

(ii.b)=2.

(ii.c)

数学课堂留白,指数学教师在课堂教学的某些环节中,有意留出一定的时间和空间让学生自主思考、感悟,为学生构建属于自己的数学认知结构,从事数学探究活动,表达对数学的理解提供机会.数学课堂留白艺术的运用,为师生思维火花的碰撞提供契机,有助于提高数学课堂教学的效能.

(iii)z1 ≥ 1 if and only if

Proof (i)z2<1 is equivalent to Hence,ifhold,then the conclusion(i)holds.

最后借用何显斌教授的一句话:“只有当刑罚以正义和人道为基本价值取向的时候,刑法的价值—秩序和自由才能实现并确保和谐的共生关系。”[8]我们设立刑法是为了很好的维护正常的自由、秩序,而不是滥用刑罚。

根据试验安排和结果,建立RS3质量分数的回归模型,并对模型方差分析。结果分析表明,此模型的决定系数R2为0.767 6,响应面回归模型达到高度显著性水平(p=0.039 0)(如表2所示)。回归方程模型失拟p=0.057 3>0.05,不显著,说明该二次模型能够拟合真实的试验结果(如表3所示)。则

From Proposition 2.1,we have the following proposition.

Poposition 2.2 Proposition 2.1 is equivalent to the following statements.

Proof Note that for 0< x< 1.It follows from Proposition 2.1 thatThen

(i)It follows fromthatIt follows from(i)of Proposition 2.1 thatHence,ifthen z2<1.The conditions(ii.a),(ii.b)and(ii.c)of Proposition 2.1 are equivalent toTherefore,ifthen z1<1≤z2.Note that condition(iii)of Proposition 2.1 is impossible.

The proofs of(ii)and(iii)are similar to that of(i)and we omit the detail here.This completes the proof of Proposition 2.2.

By the above discussion and Propositions 2.1 and 2.2,we have the following result.

21世纪以来,伴随着艺术终结的讨论,美学是否可复兴,该以何种方式复兴的问题,以多种形式纷争于学术界的许多个场合中,其中也隐含着美学与社会实践关系问题的交锋。虽然比起20世纪50年代和80年代,21世纪美学的社会指向作用显得弥散而疲软,却暗潮汹涌,不仅表现了美学思想与社会实践的契合度,也隐含着美学思想推动社会实践、改造社会实践的雄心壮志。美学教育不该囿于书本,纸上谈兵,而应结合当代社会实践,辨析人生与美学的关系,确定人文价值观。

Proposition 2.3 Equation(2.5)has the following result.

Next we show the global stability of equilibrium of system(1.3),and obtain the following lemmas.

由表3可以看出,增设磁选机后,生产系统介耗大幅下降,平均降到了1.8 0kg/t左右(2012年1~3月统计)。

Lemma 2.3 If the predator-extinction equilibrium E1(K,0,0)is locally asymptotically stable,then E1(K,0,0)is globally asymptotically stable.

Proof Consider the following Lyapunov function

where

Calculating the derivative of V along the solution(x(t),S(t),I(t))of system(1.3),we have

Again,for the unique endemic-coexistence equilibrium E(x,S,I),the Jacobian matrix is given by

Lemma 2.4 If the disease-free equilibrium E2(x1,S1,0)is locally asymptotically stable,then E2(x1,S1,0)is globally asymptotically stable.

Proof De fine a Lyapunov function as follows

where ηi=,i=1,2.

Calculating the derivative of V along the solution(x(t),S(t),I(t))of system(1.3),we have

It follows from Lemma 2.2 that βS1− d2 < 0.LetThen it follows from(2.7)that

We can easily calculate that system(1.3)always has a trivial equilibrium E0(0,0,0)and a predator-extinction equilibrium E (K,0,0).If

Therefore,V(t)is bounded on[0,+∞)and satisfies

From the first equation of system(1.3)and the above equality,we have

so

It follows from the above inequality that(x(t)−x1)2∈ L1[0,+∞)and I(t)∈L1[0,+∞).By Barbalat’s lemma[16],we conclude that

Hence,

that is

Then,from(2.9)-(2.11),E2(x1,S1,0)is globally asymptotically stable.This completes the proof of Lemma 2.4.

Lemma 2.5 If the unique endemic-coexistence equilibrium E(x,S,I)is locally asymptotically stable,then E(x,S,I)is globally asymptotically stable.

Proof De fine a Lyapunov function as follows

where ηi=,i=1,2.

Calculating the derivative of V along the solution(x(t),S(t),I(t))of system(1.3),we obtain

Thus V(t)is nonincreasing.By Lemma 2.1,(x − x)2is bounded.On the other hand,it is easy to see that x(t)is bounded.Therefore,(x − x)2is uniformly continuous on[0,+∞).Integrating both sides of(2.12)over the interval[0,+∞),we have

Hence,V(t)is bounded on[0,+∞)and satisfies∫

The above inequality implies that(x(t)− x)2 ∈ L1[0,+∞).By Barbalat’s lemma[16],we have

so

It follows from the first equation of system(1.3)and the above equality that

Hence,

that is

By the definition of x,we haveThen,from(2.15),we obtain

From the second equation of system(1.3)and(2.16),we have

Hence,from(2.14)and(2.16),we obtain

that is

Therefore,by(2.14),(2.16)and(2.17),E(x,S,I)is globally asymptotically stable.This completes the proof of Lemma 2.5.

Now,we give the main result of this section.Let z=1−m in(2.5).According to the above analysis and summarizing Propositions 2.1-2.3 and Lemmas 2.2-2.5,we obtain the following theorem.

Theorem 2.1

(i)If≥1,then the predator-extinction equilibrium E1(K,0,0)is globally asymptotically stable.

(ii)Ifwe obtain:

(ii.a)Ifthen the disease-free equilibrium E2(x1,S1,0)is globally asymptotically stable for alland the predator-extinction equilibrium E1(K,0,0)is globally asymptotically stable for all

(ii.b)Ifthen the unique endemic-coexistence equilibrium E(x,S,I)is globally asymptotically stable for all 0< m < 1−z1,the disease-free equilibrium E2(x1,S1,0)is globally asymptotically stable for alland the predator-extinction equilibrium E1(K,0,0)is globally asymptotically stable for all 1−<m<1.

(iii)Ifwe obtain:

(iii.a)Ifthen the disease-free equilibrium E2(x1,S1,0)is globally asymptotically stable for all 0<m<0.5,and the predator-extinction equilibrium E1(K,0,0)is globally asymptotically stable for all 0.5<m<1.

(iii.b)Ifthen the unique endemic-coexistence equilibrium E(x,S,I)is globally asymptotically stable for all 0<m<1−z1,the disease-free equilibrium E2(x1,S1,0)is globally asymptotically stable for all 1−z1<m<0.5,and the predator-extinction equilibrium E1(K,0,0)is globally asymptotically stable for all 0.5<m<1.

(iv)Ifwe obtain:

(iv.a)Ifthen the disease-free equilibrium E2(x1,S1,0)is globally asymptotically stable for all and the predator-extinction equilibrium E1(K,0,0)is globally asymptotically stable for all

(iv.b)Ifthen the disease-free equilibrium E2(x1,S1,0)is globally asymptotically stable for alland the predator-extinction equilibrium E1(K,0,0)is globally asymptotically stable for all

(iv.c)Ifthen the disease-free equilibrium E2(x1,S1,0)is globally asymptotically stable for all 0<m<1−z2or the unique endemic-coexistence equilibrium E(x,S,I)is globally asymptotically stable for all 1−z2<m<1−z1,and the predator-extinction equilibrium E1(K,0,0)is globally asymptotically stable for all

(iv.d)If,then the unique endemic-coexistence equilibrium E(x,S,I)is globally asymptotically stable for all 0 < m < 1− z1,the disease-free equilibrium E2(x1,S1,0)is globally asymptotically stable for all and the predator-extinction equilibrium E1(K,0,0)is globally asymptotically stable for all

3 Numerical Simulations

In this section we give some numerical simulations of systems(1.3).We consider the following system

where r=1.6;K=2;c=0.8;e=1;d2=1.2.

When d1=1.5,0.5<=0.75 < 1.Let β =3,thenIt follows from Theorem 2.1(ii.b)that the unique endemic-coexistence equilibrium E(x,S,I)is globally asymptotically stable for all 0 < m < 0.081(see Figure 1(b)),the disease-free equilibrium E2(x1,S1,0)is globally asymptotically stable for all 0.081<m<0.25(See Figure 1(c)),and the predator-extinction equilibrium E1(2,0,0)is globally asymptotically stable for all 0.25<m<1(See Figure 1(d)).

When d1=1,Let β =1.5,thenIt follows from Theorem 2.1(iii.b)that the unique endemic-coexistence equilibrium E(x,S,I)is globally asymptotically stable for all 0<m<0.309(see Figure 2(b)),the diseasefree equilibrium E2(x1,S1,0)is globally asymptotically stable for all 0.309<m<0.5(see Figure 2(c)),and the predator-extinction equilibrium E1(2,0,0)is globally asymptotically stable for all 0.5<m<1(see Figure 2(d)).

When d1=0.4,=0.2 < 0.5.Let β =0.6,then=0.8< =1<=1.25.It follows from Theorem 2.1(iv.c)that the disease-free equilibrium E2(x1,S1,0)is globally asymptotically stable for all 0<m<0.276 or 0.724<m<0.8(see Figures 3(b)and 3(d)),the unique endemic-coexistence equilibrium E(x,S,I)is globally asymptotically stable for all 0.276 < m < 0.724(see Figure 3(c)),and the predator-extinction equilibrium E1(2,0,0)is globally asymptotically stable for all 0.8<m<1(see Figure 3(e)).

Figure 1:Dynamics behavior of system(3.1)with d1=1.5;β=3.

Figure 2:Dynamics behavior of system(3.1)with d1=1;β=1.5.

Figure 3:Dynamics behavior of system(3.1)with d1=0.4;β=0.6.

4 Discussion

In this paper,we study the global dynamics of a predator-prey model with prey refuge and disease in the predator.We show that prey refuge palys an important role in the dynamics of a predator-prey system(1.3).Form the above results,if the refuge m is sufficiently small,then the dynamics behavior of system is accordant with the corresponding system without prey refuges.By decreasing the value of natural death rate of the susceptible predator d1,the dynamics behavior of system becomes complicated,that is the global stable equilibrium may be changed by increasing the value of refuges m.This shows that prey refuge palys an important role in the dynamics behavior of system(1.3).

References

[1]Y.Kuang,Delay Differential Equations with Applications in Population Dynamics,Academic Press,New York,1993.

[2]K.Gapalsamy,Stability and Oscillations in Delay Equations of Population Dynamics,Kluwer Academic Publishers,London,1992.

[3]W.Kermack,A.McKendrick,A contribution to the mathematical theory of epidemics,Proc.R.Soc.Lond.,115(1927),700-721.

[4]J.Chattopadhyay,O.Arino,A predator-prey model with disease in the prey,Nonlinear Anal.TMA,36(1999),747-766.

[5]M.Haque,S.Sarwardi,S.Preston,E.Venturino,Effect of delay in a Lotka-Volterra type predator-prey model with a transmissible disease in the predator species,Math.Biosci.,234(2011),47-57.

[6]S.L.Sun,C.D.Yuan,On the analysis of predator-prey model with epidemic in the predator,J.Biomath.,21(2006),97-104.

[7]Z.H.Ma,W.L.Li,Y.Zhao,W.T.Wang,H.Zhang,Z.Z.Li,Effects of prey refuges on a predator-prey model with a class of functional response:the role of refuges,Math.Biosci.,218(2009),73-79.

[8]Z.H.Ma,S.F.Wang.W.Li,Z.Z.Li,The effect of prey refuge in a patchy predator-prey system,Math.Biosci.,243(2013),126-130.

[9]Y.Huang,F.Chen,Z.Li,Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge,Appl.Math.Comput.,182(2006),672-683.

[10]G.Y.Tang,S.Y.Tang,R.A.Cheke,Global analysis of a Holling type II predator-prey model with a constant prey refuge,Nonlinear Dyn.,76(2014),635-647.

[11]Z.Z.Ma,F.D.Chen,C.Q.Wu,W.L.Chen,Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference,Appl.Math.Comput.,219(2013),7945-7953.

[12]L.J.Chen,F.D.Chen,Y.Q.Wang,In fluence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics,Commun.Nonlinear Sci.Numer.Simulat.,18(2013),3174-3180.

[13]R.Z.Yang,C.R.Zhang,Dynamics in a diffusive predator-prey system with a constant prey refuge and delay,Nonlinear Anal.RWA,31(2016),1-22.

[14]J.Ghosh,B.Sahoo,S.Poria,Prey-predator dynamics with prey refuge providing additional food to predator,Chaos,Solitons Fractals,96(2015),110-119.

[15]J.K.Hale,Ordinary Differential Equations,Krieger,Malabar,FL,1980.

[16]I.Barbalat,Systems d’equations differential d’oscillations nonlinearities,Rev.Roumaine Math.Pure Appl.,4:2(1959),267-270.

Zaowang Xiao,Zhong Li
《Annals of Applied Mathematics》2018年第1期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号