更全的杂志信息网

Normal Families of Holomorphic Functions Concerning Zero Numbers

更新时间:2016-07-05

1 Introduction and Main Results

Let F be a meromorphic function in C,and D be a domain in C.F is said to be normal in D if any sequence{fn}⊂F contains a subsequence fnjsuch that fnjconverges spherically locally uniformly in D,to a meromorphic function or ∞ (see[1]–[3]).

In 1959,Hayman[4]proved the following result.

Theorem 1.1 Let f be a meromorphic function in C,n≥5 be a positive integer,and a(0),b be two finite constants.If f− afnb,then f is a constant.

The following normality criterion corresponding to Hayman’s result was proved by Drasin[5]and Ye[6].

Theorem 1.2 Let n≥2 be a positive integer,a(0),b be two finite constants,and F be a family of Holomorphic functions in a domain D.If for each f ∈ F,f−afnb,then F is normal in D.

Recently,by the idea of concerning zero numbers,Deng et al.[7]proved the following result.

Theorem 1.3 Let m,n,k be three positive integers satisfying n≥m+1,a(0),b be two finite constants,and F be a family of Holomorphic functions in a domain D,all of whose zeros have multiplicity at least k.If for each function f∈F,f(k)−afn−b has at most mk distinct zeros in D,then F is normal in D.

A natural problem arises:what can we say if f(k)in Theorem 1.3 is replaced by the(f(k))d?In this paper,we prove the following result.

按实验方法对水系沉积物成分标准样品GBW07449、GBW07453,钨钼矿石成分标准样品GBW07241,钼矿石成分标准样品GBW07239进行处理,平行测定12次,对测定结果进行统计分析,结果见表5。由表5可知,测定值与认定值基本一致,相对标准偏差(RSD)均不大于6.8%。

Theorem 1.4 Let m,n,k,d be four positive integers satisfying n≥(m+1)d,a(0),b be two finite constants,and F be a family of holomorphic functions in a domain D,all of whose zeros have multiplicity at least k.If for each function f∈F,(f(k))d−afn−b has at most mdk distinct zeros in D,then F is normal in D.

Example 1.1 Let n,k,d be three positive integers,a be a nonzero finite constant,and F={fj=jzk−1:j=1,2,3,···},D={z:|z|< 1}.Then,for each f ∈ F,(f(k))d−afn−0 has just one distinct zero in D,but F is not normal in D.This shows that the zeros of function f∈F have multiplicity at least k is necessary in Theorem 1.4.

Example 1.2 Let n,k,d be three positive integers,a be a nonzero finite constant,and F={fj=jzk:j=1,2,3,···},D={z:|z|< 1}.Then,for each f ∈ F,(f(k))d −af(m+1)d−1−0 has exactly[(m+1)d−1]k ≥ mdk distinct zero in D,and(f(k))d−af(m+1)d−0 has exactly(m+1)dk≥mdk+1,but F is not normal in D.This shows that both n≥(m+1)d and(f(k))d−afn−b have at most mdk distinct zeros in Theorem 1.4 are best possible.

On the other hand,by(2.2),we have

2Some Lemmas

In order to prove our theorems,we require the following results.

在过去的2018年,尽管汽车工业正在发生巨大转型,格劳博仍然成功巩固了牢靠的市场地位,凭借的正是领先的技术和机床,以及传统动力总成技术和新电动驱动设备的优化组合。面对即将到来的2019年,格劳博已经对市场的转变做好了充分的准备,坚信这必将又会是收货满满的一年,并且在未来获得持续成功。     

Lemma 2.1[8] Let F be a family of meromorphic functions on the unit disc Δ satisfying all zeros of functions in F have multiplicity≥p and all poles of functions in F have multiplicity≥ q.Let α be a real number satisfying−p< α< q.Then F is not normal at a point z0if and only if there exist

(i)points znΔ,zn→z0;

(ii)positive numbers ρnn → 0;

(iii)functions fn∈F

such thatfn(zn+ ρnζ)→ g(ζ)spherically uniformly on each compact subset of C,where g(ζ)is a nonconstant meromorphic function satisfying the zeros of g are of multiplicities≥p and the poles of g are of multiplicities≥q.Moreover,the order of g is at most 2.If g is holomorphic,then g is of exponential type and the order of g is at most 1.

Lemma 2.2[9] Let f be a nonconstant meromorphic(entire)function in the complex plane,a(0)be a finite constant,and n be a positive integer with n≥4(n≥2).Then f−afnhas at least two distinct zeros.

Lemma 2.3 Take f be an entire function,let a(/0)be a finite constant,and n,m,d,k be four positive integers satisfying n≥(m+1)d and mdk≥2.If all zeros of f have multiplicity at least k,then

Proof.Set

Since all zeros of f have multiplicity at least k,it follows f(k)(z)0.Otherwise,f is a polynomial with degf ≤ k − 1,thus f is a constant,a contradiction.Hence Ψ(z) 0.

根据2011年国务院批复的《全国重要江河湖泊水功能区划》,长江流域及西南诸河共划定了1 521个水功能区(其中长江流域1 363个、西南诸河1 58个),并根据每个水功能区内的现状水质和开发利用程度以及规划用水需求确定了每个水功能区的水质管理目标。对于需要保护和严格控制开发的水功能区,确定了较严格的水质管理目标;对于要承载开发利用活动的水功能区,则以用水水质要求做作为管理目标。这些制度体现了水功能区管理统筹兼顾、分类指导的原则。

By(2.1),we have

Thus,we get

充实国土普法“铁军”队伍。线下不断纳新,壮大“你是我的眼”法治宣传员和“宣传哨前兵”两支队伍,为宣传工作注入新鲜血液,同时在线上不断完善由这两支队伍组建的两个普法宣传工作联络微信群,除了布置任务、规范统一行动,相互学习、传授工作经验外,鼓励大家建言献策,开展头脑风暴,为开辟普法新阵地出好力。

在GPS测绘技术中,布网质量对测绘结果的精准度具有直接影响。因此在实际测绘期间,工作人员须采用点连式及或边连式测绘的方式对三个交互点图像图形进行测绘。在将GPS测绘技术用于工程枢纽施工时,可通过增加网格的精准度及强度方式保障测绘数据的准确性。不仅如此,由于GPS测绘技术可对地区特殊地质条件及环境进行模拟,更加适用于多领域工程前期勘探中,对提升工程测绘质量及效率具有重要意义。

Obviously,(g)d−agnhas at least n ≥ (m+1)d=mdk+d≥ mdk+1 distinct zeros,this is a contradiction.

3.方法落后,是影响风险管理审计的关键因素。风险管理审计还缺乏一套较为系统、科学的风险管理方法做指导。一方面,审计范围主要停留在控制风险、确保审计质量等基本层面,没有按科学的风险管理过程进行管理,成果应用不充分;另一方面,没有具体的、针对性强的风险管理策略。审计经验不足,创新能力不强,导致不能恰当地预测风险、识别风险、评估风险和应对风险,阻碍了内部审计有效开展风险管理审计。

By(2.2),we have

永磁体周围磁场仿真采用的数学模型为等效电流模型。由于永磁体内部磁化方向统一且大小均匀,分子排列整齐,分子间电流的作用相互抵消,所以从宏观上只有永磁体的侧表面电流对外产生磁场。根据毕奥-萨伐尔定律,电流元对空间某点磁场强的计算,通过对柱面侧表面的积分,可以求得柱状永磁体外任意一点磁感应强度[14]:

and Ψ (z) 1.Otherwise,we get

Because f is an entire function,we have

Then

Thus

a contradiction.Hence Ψ (z) 1.

it follows that

Thus by(2.3)–(2.5)and Nevanlinna’s first and second fundamental theorems,we have

Since

it follows from(2.6)–(2.8)that

Lemma 2.3 is proved.

西方的许多法庭也似乎都意识到文化调解的风险而对译员的文化调解行为作了严格的限制。比如,澳大利亚难民仲裁法庭提供的《译员手册》认为,除非司法人员意识到文化问题并要求解释,否则译员不可主动提供关于文化的评论[6]。美国马里兰州的《译员指南》明确指出:译员不可随意扮演文化调解者的角色,否则有越出其职责范围而去扮演律师的风险[7]。美国加州法院管理办公室出版的《加州法庭译员职业标准和守则》也指出:除非法官要求,译员不得自作主张进行解释。译员不是文化专家,对于与文化相关的问题,应该咨询相关领域的权威[8]。

3 Proof of Theorem 1.4

Considering n≥(m+1)d,by(3.1),we get

spherically uniformly on compact subsets C,where g is a nonconstant holomorphic function on C and whose zeros have multiplicity at least k.Moreover,the order of g is at most 1.Obviously,(g(k)(ξ))d − agn(ξ) 0.Suppose not,since g is an entire function,we have

(1)激光淬火生产中存在的主要问题 根据激光淬火工艺研究中工艺参数及其内在联系可知:在激光淬火生产过程中操作人员对各项工艺参数准确控制、要求严格,不可避免会出现工艺稳定性较差情况发生。出现这一现象的原因主要是光斑功率密度及激光不均匀性影响淬火工艺的稳定性;光斑形状对淬硬层均匀性的影响;激光淬火中大面积淬硬层难以保证;工件初始状态对激光淬火质量的影响。

By(3.1)and noticing that md=2,k=1,we have

So g is a constant,a contradiction.

We claim that(g(k)(ξ))d−agn(ξ)has at most mdk distinct zeros.Suppose that(g(k)(ξ))d−agn(ξ)has mdk+1 distinct zeros ξi(i=1,2,···,mdk+1).We have

uniformly on compact subsets of C.By Hurwitz’s theorem,for j sufficiently large,there exist points ξj,i(i=1,2,···,mdk+1)such that ξj,i → ξiand

However,− b have at most mdk distinct zeros in D,and zj+ ρjξj,i → z0,which is a contradiction.So we can get(g(k)(ξ))d − agn(ξ)has at most mdk distinct zeros.If mdk=1,we get m=1,d=1,k=1,and this is a contradiction with Lemma 2.2.

Next,we consider the case mdk≥2.

Suppose that(g(k))d−agnhas l(≤ mdk)distinct zeros.Since g is an entire function all zeros of g have multiplicity at least k,by Lemma 2.3,we can obtain

黄体功能不好、无排卵子宫出血等,这样的出血可能没有那么规律。可以通过监测基础体温、黄体中期的孕酮水平或者借助诊刮协助诊断。

Suppose that F is not normal at z0.Then by Lemma 2.1,there exist fj∈F,zj→z0,and ρj→ 0+such that

Thus,we deduce that g is a nonconstant rational function satisfying

Next we consider two cases.

酸味的主要来源是鱼粉中的低碳链脂肪酸有机酸,与鱼粉中油脂氧化酸败程度有关。氧化程度越强,产生的低级脂肪酸越多,酸味就越浓。鱼粉在储运过程中,微生物发酵也会产生酸味。

Case 1 md≥2 and k≥1.

We consider two subcases again.

Case 1.1 md≥2 and k=1.

By(3.2),we get

Next we consider two subcases again.

随着我国社会经济的不断发展,道路交通建设实现了高速发展,同时随着人们生活水平和人均收入的不断提高,购买私家车的家庭也逐年增多。私家车数量上的增多一方面给人们的生活带来了极大的便利,另一方面增加了城市交通管理的复杂性,交通事故出现的概率较往年而言也有了大幅度的增加,其中酒驾事故的频频发生,不仅给自身而且也给社会安全带来了极大危险,由此,人们对于该方面的立法也给予了足够的关注和认识。

Case 1.1.1 md=2.

In this case we have

We deduce that degg≤2.Next we consider two subcases again.

其次,学校要出台相关规定和纪律。强调科研项目经费的国有资金性质以及对滥用经费的处罚手段,让所有人明确违规违纪后果的严重性。从思想上改变对项目经费的认识,从纪律上约束滥用项目经费的行为,正确对待项目经费的使用。正所谓“无规矩不成方圆”,有了完善的约束机制,高校科研经费才能在正确的使用范围内发挥最大的作用。

Case 1.1.1.1 degg=1.

We can write g(ξ)=Aξ+B,where A0.So,

whereis the counting function of zeros of both Ψ and f(k).It follows that

Case 1.1.1.2 degg=2.

We can write g(ξ)=B1(ξ− α1)(ξ− α2),where B10.

When α1= α2,we have

Then

So,we know

this is a contradiction.

If α1 α2,then we are supposed to notice that n ≥ (m+1)d=2+d.If n ≥ 3+d,then by(3.1)and noticing that md=2,k=1,we get

which is a contradiction.

If n=2+d,then g(ξ)=B(ξ− α)(ξ− α),where B0 and α α.Set φ =

112112 noticing that md=2,k=1,next we consider two subcases again.

Case 1.1.1.2.1 m=2,d=1,k=1.

In this case,we get

Obviously,g− ag3and φφ +a have the same zeros.

SetThen we get ψ= φφ,and we obtain

where is a non-zero constant.So we have

where q1(ξ)is a polynomial with degq1=1.

By Lemma 2.2,we get that g− ag3has at least two distinct zeros,then φφ +a has at least two distinct zeros.Suppose that φφ +a has only two distinct zeros b1,b2,and set

where C is a non-zero constant,and l1+l2=6.So

where q2(ξ)is a polynomial with degq2 ≤ 2.

From(3.3),we also have

where q3(ξ)is a polynomial with degq3 ≤ 2.Noticing that α12and b1,b2are distinct,from(3.4)and(3.5),we get l1+l2−2≤degq3≤2.Then l1+l2≤4,this contradicts with l1+l2=6.Then ψ+a has at least three distinct zeros.So g−ag3has at least 3=mdk+1 distinct zeros,this is a contradiction.

Case 1.1.1.2.2 m=1,d=2,k=1.

In this case,we have

Obviously,(g)2 − ag4and(φ)2 − a have the same zeros.By a simple calculation,we get

where q4(ξ)=[2ξ− (α1+ α2)]2.Obviously,(φ)2 − a has at least two distinct zeros.Suppose that(φ)2 − a has only two distinct zeros b3,b4,and set

where C is a non-zero constant,and l3+l4=8.Then

where q5(ξ)is a polynomial with degq5 ≤ 2.From(3.6),we also have

where q6(ξ)is a polynomial with degq6 ≤ 3.Noticing that α12and b3,b4are distinct,from(3.7)and(3.8),we get

i.e.,l3+l4 ≤ 5,this contradicts with l3+l4=8.Then(φ)2− a has at least three distinct zeros,so(g)2 − ag4has at least 3=mdk+1 distinct zeros,this is a contradiction.

Case 1.1.2 md≥3.

By(3.2),we obtain

So we get degg=1.As discussed in case 1.1.1.1,we get a contradiction.

Case 1.2 md≥2,k≥2.

By(3.2),we get

Then we know that g has at most one zero since all zeros of g have multiplicity at least k.Assume that g(ξ)=A(ξ−c)l,where k ≤ l≤ k+1.Then,

Obviously,(g(k))d−agnhas nl−(l−k)d≥mdk+dk distinct zeros,this is a contradiction.

Case 2 md=1,k≥2.

By(3.2),we get

Next,we consider two subcases.

Case 2.1 k=2.

By(3.9),we get

So degg≤4.We divide into two subcases again.

Case 2.1.1 degg=4.

We deduce that g has two distinct zeros at most since all zeros of g have multiplicity at least k=2.If g has only one zero,as discussed in Case 1.2,we get a contradiction.Then g has two distinct zeros.In the condition of n≥(m+1)d≥2,we discuss it in two conditions.If n≥3,then by(3.1)and noticing that md=1,k=2,we obtain

which contradicts with degg=4.If n=2,we can write g(ξ)=A(ξ− α1)2(ξ−α2)2,where A0 is a constant and α1 α2,and set

where β2=A,then

Obviously,g′′− ag2and −2ψ′′ψ +6(ψ)2 − a have the same zeros.From(3.10),we have

where q7(ξ)= −B[2ξ−(α12)],B=and

where q8(ξ)is a polynomial with degq8 ≤ 2.From(3.10)–(3.12),we get

where h(ξ)is a polynomial with degh ≤ 2.Obviously,ϕ−a has at least two distinct zeros.Suppose that ϕ−a has only two distinct zeros b1,b2,and set

where C is a non-zero constant,and l1+l2=8.So

where q9(ξ)is a polynomial with degq9 ≤ 2.From(3.13),we also have

where q10(ξ)is a polynomial with degq10 ≤ 3.Noticing that α12and b1,b2are distinct,from(3.14)and(3.15),we have

i.e.,l1+l2 ≤ 5,this contradicts with l1+l2=8.Then ϕ−a has at least three distinct zeros,so g′′− ag2has at least 3=mdk+1 distinct zeros,this is a contradiction.

Case 2.1.2 degg≤3.

We get that g has only one zero.As discussed in Case 1.2,we get a contradiction.

Case 2.2 k>2.

By(3.9),we get degg≤k+2.So we get that g has only one zero.As discussed in Case 1.2,we get a contradiction.Thus,we deduce that(g(k)(ξ))d − agn(ξ)has at least mdk+1 distinct zeros,this is a contradiction.This shows that F is normal at z0.Thus F is normal in D.

References

[1]Hayman W K.Meromorphic Functions.Oxford:Clarendon Press,1964.

[2]SchiffJ.Normal Families.Berlin:Springer-Verlin,1993.

[3]Yang L.Value Distribution Theory.Berlin:Springer-Verlag,1993.

[4]Hayman W K.Picard values of meromorphic functions and their derivatives.Ann.of Math.,1959,70(2):9–42.

[5]Drasin D.Normal families and Nevanlinna theory.Acta.Math.,1969,122:231–263.

[6]Ye Y S.A new criterion and its application(in Chinese).Chinese Ann.Math.Ser.A(Suppl.),1991,12:44–49.

[7]Deng B M,Qiu H L,Liu D,Fang M L.Hayman’s question on normal families concerning zero numbers.Complex Var Elliptic Equ.,2014,59(5):616–630.

[8]Zalcman L.Normal families:new perspectives.Bull.Amer.Math.Soc.,1998,35:215–230.

[9]Zhang Q C.Normal families of meromorphic functions concerning shared values.J.Math.Anal.Appl.,2008,338:545–551.

YANG QI
《Communications in Mathematical Research》2018年第2期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号