更全的杂志信息网

元素分析在古海水原始信息保存性研究中的应用

更新时间:2016-07-05

海相碳酸盐岩是古海水信息的原始记录和保存者,其地球化学组成可近似地代表原始古海水的地球化学组成,海相碳酸盐岩的元素地球化学特征用于研究古海洋学领域的研究已相当广泛。REE值被认为是判定沉积环境体系的重要指示器,如普遍存在的海洋缺氧环境(Liu Y G et al.,1988;German and Elderfield,1989;Murray et al.,1991;杨兴莲等,2008;明承栋等,2015;冯杨伟等,2017;)、古大洋氧化还原条件(Wang Y L et al.,1986;Elderfield and Pagett,1986;Liu Y G et al.,1988;Kato et al.,2002;朱如凯等,2002;张金亮等,2006;熊国庆等,2010;宋健等,2012;周长勇等,2014;张天福等,2016)、表层生产率变化(Toyoda et al.,1990)、主要稀土来源(Murray et al.,1991;杨兴莲等,2008;谢其锋等,2015)、岩石学和成岩作用(German and Elderfield,1989;Murray et al.,1991;Nath et al.,1992;Madhavaraju and Ramasamy,1999;Armstrong-Altrin et al.,2003;Madhavaraju and Lee,2009;Madhavaraju et al.,2010;胡忠贵等,2009;吴仕强等,2009;胡作维等,2010)、古地理学和沉积模式(Kamber and Webb,2001;Kemp and Trueman,2003;鲁洪波和姜在兴,1999;程成等,2015;陶刚等,2016)等。稀土元素在沉积作用时期不易发生分馏,其配分模式也可以为稀土组成的来源提供一个关键的信息点(Taylor and McLennan,1985;Wani and Mondal,2010;Bakkiaraj et al.,2010)。海相沉积物中许多微量元素(包括稀土元素),如U、V、Mo等氧化还原敏感微量元素,在沉积埋藏之后几乎不发生迁移,保存了其原始沉积组分,能较好地反映沉积环境特征,是古海洋环境研究的理想指标。然而另有研究认为,即使在相对强烈的成岩作用时期,古代碳酸盐岩中的REE+Y浓度也可能是很稳定的(Webb and Kamber,2000;Frimmel,2009)。因此单一地利用稀土元素或微量元素来判别碳酸盐岩的成岩蚀变程度和陆源输入量是有待商榷的,可以尝试通过常量元素、微量元素和稀土元素等特征的综合分析来评估碳酸盐岩成岩蚀变程度和陆源输入量。关于海相碳酸盐岩的古海水原始信息保存性的研究,前人主要是通过岩石手标本的观察、普通薄片的观察鉴定、阴极发光分析等方法进行研究,虽然取得了一些成果,但国内单独对碳酸盐岩古海水原始信息保存性的综合性研究还比较少,重视程度也尚且不够。

[9]China is gaining a strategic foothold in Europe by expanding its unfair trade practices and investing in key industries,sensitive technologies,and infrastructure.

图1研究区位置(a)(据张树岐等,2003)和5118高地剖面位置及地质简图(b)(据1∶25万多巴幅,2003资料修改) Fig.1 The geological sketch and the location of the 5118 section in the study area(a,from Zhang Shuqi et al.,2003&;b,modified from 1∶250000 Regional Geological Map of Duoba area,2003#) Q—第四系,P—二叠系,P1a—昂杰组,C1-2y —永珠组,O3g —刚木桑组,D1d —达尔东组,S3-4z—扎弄俄玛组,O3S2d—德悟卡下组,D1C1c —查果罗玛组,O2-3k —柯尔多组;A1—冈瓦纳大陆喜马拉雅板块;B1—冈底斯—念青唐古拉板块;B2—羌塘—三江复合板块;B3—南昆仑—巴颜喀拉板块;Js—金沙江缝合带;Bs—班公错—怒江结合带;Ys—雅鲁藏布江结合带;YZ—永珠蛇绿岩带 Q—Quaternary,P—Permian,P1a—Angjie Formation,C1-2y —Yongzhu Formation,O3g —Gangmusang Formation,D1d —Da'erDong Formation,S3-4z—Zhanong'ema Formation,O3S2d—Dewukaxia Formation,D1C1c —Chaguoluoma Formation,O2-3k —Ke'erduo Formation;A1—the Gondwana Himalayas palte;B1—the Gangdi—Nianqing Tanggula plate;B2—the Qiangtang—Sanjiang composite palte;B3—the South Kunlun—Baya karla palte;JS—the Jinsha suture zone;BS—the Bangongcuo—Nujiang juncture zone;YS—the Yarlung Zangbo suture zone;YS—the Youngzhu ophiolite belt

论文以西藏申扎地区奥陶系—志留系界线海相碳酸盐岩和泥页岩元素地球化学特征研究为例,对该时期碳酸盐岩和泥页岩的常量元素、微量元素和稀土元素地球化学特征进行了分析研究,从陆源碎屑组分的输入和成岩作用的蚀变程度两方面探讨了申扎地区奥陶系—志留系碳酸盐岩和钙质泥页岩对原始古海水信息的保存性,这为下一步将元素地球化学分析与岩石手标本观察、薄片观察鉴定、阴极发光分析和同位素地球化学分析等方法相结合,从而对申扎地区奥陶系—志留系碳酸盐岩和钙质泥页岩的原始古海水信息保存性的综合性研究提供可靠基础,也为其他区域其他时期古海水原始信息保存性研究提供一个新的参考。

1 地质背景与样品采集

西藏申扎地区位于西藏北部班公错—怒江结合带和雅鲁藏布江结合带之间。地层区划属滇藏大区冈底斯—腾冲区(如图1a)。区内地层发育,生物化石十分丰富,是中国古生代地层学、古生物学研究的理想地区之一。该研究区奥陶系共分为拉塞组(O1l)、柯尔多组(O2-3k)和刚木桑组(O3g)3个组,志留系共分为2个组,即德悟卡下组(O3S2d)和扎弄俄玛组(S3-4z)(如图1b)。本次研究选取的5118高地剖面位于西藏申扎地区申扎—雄梅柏油公路旁,交通便利,地层沉积连续,生物化石丰富,前人做了大量且十分详尽的基础研究(林宝玉,1981,1982,1983;黄枝高,1982;夏代祥,1983;张树岐等,2003;程立人等,2004),建立了精确的生物地层格架,是进行岩石地球化学分析的理想地层剖面。

图2 西藏申扎地区5118高地地层剖面序列和时代划分及采样位置图 Fig.2 The stratigraphic sequence,the epoch division and sampling location of the 5118 section in Shenzha Area,Xizang(Tibet)

本次研究采集的样品均来自于5118高地剖面,自下而上系统采集60件岩石样品,选择风化程度低相对较新鲜且具有代表性的岩石样品30件进行元素地球化学分析,其中泥页岩样品4件,灰岩样品26件,包括奥陶系样品18件,志留系样品12件(如图2)。

从各相关系数来看,与南京河流表层沉积物中APA最具相关性的是有机质质量百分数(r=0.763),极显著正相关(p=0.006);其次是总磷(r=0.703),显著正相关(p=0.016);再次为可交换态氮,与硝酸盐氮、铵态氮均显著正相关。表明表层沉积物营养成分充足情况下,使各种微生物保持旺盛的新陈代谢,则APA相对较高。各种磷形态中TP与APA的相关性最好,OP其次。APA与OP相关性较好,为正相关(r=0.576)。这一现象说明调查区域沉积物的有机磷经碱性磷酸酶作用产生的无机磷为沉积物中生物所利用。可交换态氮与APA的相关性好于凯氏氮,进一步印证了上述结论。

2 分析方法

2.1 样品的制备

稀土元素总量(∑REE)是指所有稀土元素含量的总和,不同沉积环境中的稀土元素含量表现出明显的差异性,甚至不同海洋或同一海洋不同深度稀土元素总量也不同,因此可以根据稀土元素总量以及轻、重稀土的富集特征,来阐明沉积岩形成的环境条件、演化历史和物质来源等。

表1 5118高地地层剖面灰岩和泥页岩常量元素分析结果 Table 1 Major elements values of limestone and mud shale of the 5118 section

样品编号时代岩性Al2O3(%)CaO(%)TFe2O3(%)K2O(%)MgO(%)Na2O(%)GM(-30)德悟卡下组灰岩2.05141.4960.6861.1590.5560.055GM(-27)德悟卡下组灰岩1.95043.7010.8350.6470.5890.049GM(-26)德悟卡下组灰岩1.32441.2860.6170.4630.5550.047GM(-25)德悟卡下组灰岩2.21140.6460.8240.7151.4570.054GM(-24)德悟卡下组灰岩1.86442.4410.7970.7510.6100.057GM(-23)德悟卡下组灰岩1.61844.8770.6570.8720.7170.059GM(-22)德悟卡下组灰岩0.80743.6380.4570.3240.6250.053GM(-21)德悟卡下组灰岩0.30747.0400.3170.1630.4430.049GM(-20)德悟卡下组灰岩0.78044.3420.4960.3950.5080.046GM(-17)德悟卡下组灰岩0.71847.1140.4410.3270.5760.055GM(-15)德悟卡下组灰岩1.32342.2731.6050.5841.1220.056GM(-12)德悟卡下组灰岩1.16144.3940.6450.3970.5650.049GM(-10)刚木桑组灰岩0.88342.3570.5150.3110.50520.049GM(-6)刚木桑组灰岩1.48242.8820.5490.5880.6390.054GM(-4)刚木桑组灰岩0.73242.4200.5120.2810.5040.053GM(5)刚木桑组灰岩0.95244.0060.6240.3830.6470.049GM(6)刚木桑组灰岩1.62842.4100.7760.7670.6680.057GM(7)刚木桑组灰岩1.54442.1470.8240.5940.6220.055GM(8)刚木桑组灰岩1.24945.5070.6600.5400.6200.054GM(1)刚木桑组泥页岩14.07517.4205.0933.1731.4860.188GM(2)刚木桑组泥页岩12.92019.6254.8172.9351.3620.175GM(3)刚木桑组泥页岩12.05519.3314.4742.7511.3080.161GM(4)刚木桑组泥页岩13.12016.6434.7182.9711.4040.176

2.2 样品的分析测试

4.2.4 δEu与∑(REE)值、δEu与δCe值相关性

2)通过提升试验(升降角度α在22°~70°)范围内,其中在上拉杆与地面的角度在(40°~50°)范围内各个拉杆垂直力和水平力的集中范围比其他的角度小约300~700N。

3 结果

3.1 常量元素

由化脓性链球菌敏感菌株的轻至中度急性扁桃体炎、咽炎,以及由肺炎链球菌敏感菌株或流感嗜血杆菌(仅包括非产β‐内酰胺酶菌株)引起轻至中度急性细菌性上颌窦炎。

3.2 微量元素

我国的建筑行业自新中国建立起第一家大型国有建筑公司——华北建筑公司以来,经历了69年的风雨历程,解决了各种困境和压力,给我们留下了具有历史意义、惠民、利民意义的建筑工程,如葛洲坝水利枢纽工程大坝、长江三峡水利枢纽工程、都江堰的抢修工程及各大园林、市政、高铁、桥梁、一带一路工程等等。由此可见建筑业已经从满足老百姓的居住需求发展到了满足社会经济发展的需求,建筑的功能性更加全面,对于建筑工程施工技术质量控制要求也提升到了更高的层面。因此强化建筑工程施工技术质量控制措施,不断提高建筑工程项目的技术质量,是社会发展的需要,更是强大国家经济的需要。

3.3 稀土元素

西藏申扎地区奥陶系—志留系灰岩和泥页岩稀土元素分析测试结果(表3)均使用太古宙页岩值(PAAS)进行了标准化(Taylor et al.,1985),如图3b。结果表明,泥页岩∑REE含量分布范围为166.8~240.2 μg/g,灰岩∑REE含量主要分布范围为35~65 μg/g,灰岩∑REE含量明显低于泥页岩∑REE含量,这与Piper(1974)提出的海相碳酸盐岩比陆源碎屑物的∑REE含量低得多相一致。此外,该研究区奥陶系—志留系灰岩和泥页岩稀土元素PAAS配分模式为平坦型,表现为轻稀土的富集,重稀土的亏损,LREE/HREE平均值为2.94。灰岩的Y/Ho值范围为30~38(现代海水Y/Ho值为44),泥页岩的Y/Ho值范围为26~28(太古宙页岩Y/Ho值为27),灰岩和泥页岩均表现为δCe负异常(平均值0.76)和δEu负异常(平均值0.81)。

表2 5118高地地层剖面灰岩和泥页岩微量元素分析结果 Table 2 Trace elements values of limestone and mud shale of the 5118 section

样品编号时代岩性CoNiCrVSrRbBaPbZrYNbHfThUGM(-30)德悟卡下组灰岩0.2370.2370.2850.1120.7090.1650.0840.1870.1300.4340.2340.2060.2610.310GM(-27)德悟卡下组灰岩0.2030.2410.2110.0821.0060.1630.0430.1510.0710.3800.1700.1350.2280.291GM(-26)德悟卡下组灰岩0.1780.2320.2890.0760.8350.1260.0230.0970.0800.4170.1660.1470.1780.250GM(-25)德悟卡下组灰岩0.2290.4620.3480.1220.6890.1940.0340.1430.1590.4960.3170.2650.2920.306GM(-24)德悟卡下组灰岩0.2090.2860.3210.0820.6230.1620.0550.1780.1280.4680.2150.2170.2520.219GM(-23)德悟卡下组灰岩0.1840.2750.2540.0741.8790.1290.0540.1900.0770.4050.1600.1200.2000.206GM(-22)德悟卡下组灰岩0.1610.2540.2540.0390.7680.0750.0160.0920.0560.3700.1210.0940.1130.162GM(-21)德悟卡下组灰岩0.1520.2660.2440.0261.0300.0330.0280.0540.0250.3200.0920.0730.0590.130GM(-20)德悟卡下组灰岩0.1640.2510.2160.0391.1450.0750.0440.1020.0410.3060.1080.0850.0790.184GM(-17)德悟卡下组灰岩0.1640.2510.2530.0521.4920.0670.0220.0940.0380.3100.1080.0860.0930.265GM(-15)德悟卡下组灰岩0.1980.2840.2590.0570.9430.1250.0720.2480.1010.4670.1460.1570.1810.415GM(-12)德悟卡下组灰岩0.1770.2480.2290.0591.4410.0930.0330.1090.0820.3760.1310.1340.1380.214GM(-10)刚木桑组灰岩0.1490.2240.1930.0511.0220.0720.0710.0990.0470.3180.1100.0950.0920.172GM(-6)刚木桑组灰岩0.1830.2640.2190.0681.3790.1240.0760.1870.0700.3780.1430.1300.1670.257GM(-4)刚木桑组灰岩0.1510.2220.2950.0331.4250.0700.0350.1540.0440.2920.1140.1020.1110.209GM(5)刚木桑组灰岩0.1750.2810.2310.0471.5330.0870.0750.0820.0940.3670.1630.1430.2110.243GM(6)刚木桑组灰岩0.1640.2500.2250.0822.2790.1410.0750.1020.0700.4390.1600.1300.1970.263GM(7)刚木桑组灰岩0.2420.3320.2790.0910.9020.1430.0490.3070.1060.4270.1800.1590.2240.409GM(8)刚木桑组灰岩0.1670.2840.2950.0582.3650.1170.0520.1510.0440.3400.1360.1030.1550.301GM(1)刚木桑组泥页岩0.3410.3710.5920.5591.8421.0580.5240.5800.5751.0450.7720.7031.4410.826GM(2)刚木桑组泥页岩0.2990.2950.4360.5261.4210.8480.4230.7090.4130.8770.6530.5391.2260.728GM(3)刚木桑组泥页岩0.2880.2680.4550.4841.3620.7440.3660.4350.3390.7930.5660.4841.1560.598GM(4)刚木桑组泥页岩0.3930.4280.6100.5341.7151.1060.5560.7650.7541.1380.8070.7381.6320.927

表3 5118高地地层剖面灰岩和泥页岩稀土元素分析结果 Table 3 Rare earth elements values of limestone and mud shale of the 5118 section

样品编号时代岩性LaCePrNdSmEuGdTbDyYHoErTmYbLuGM(-30)德悟卡下组灰岩0.360.240.300.290.370.310.400.350.400.430.370.360.320.330.37GM(-27)德悟卡下组灰岩0.410.270.330.320.370.320.410.350.400.380.340.330.310.300.33GM(-26)德悟卡下组灰岩0.380.240.300.290.360.300.380.340.380.420.340.320.300.280.30GM(-25)德悟卡下组灰岩0.450.300.370.360.440.340.460.400.450.500.410.400.390.360.37GM(-24)德悟卡下组灰岩0.420.280.350.350.410.350.440.380.430.470.400.370.360.340.35GM(-23)德悟卡下组灰岩0.400.290.340.320.380.300.400.350.390.400.360.330.310.290.31GM(-22)德悟卡下组灰岩0.310.190.230.220.290.240.310.250.320.370.290.260.280.240.26GM(-21)德悟卡下组灰岩0.290.190.190.180.240.220.270.200.270.320.230.210.190.180.20GM(-20)德悟卡下组灰岩0.260.170.180.180.240.220.260.200.260.310.230.210.200.190.22GM(-17)德悟卡下组灰岩0.240.170.180.180.230.210.250.200.260.310.230.230.220.210.24GM(-15)德悟卡下组灰岩0.370.250.290.290.350.330.400.360.390.470.370.360.350.320.32GM(-12)德悟卡下组灰岩0.320.220.230.230.280.260.320.260.320.380.290.280.270.250.27GM(-10)刚木桑组灰岩0.250.180.190.180.230.230.260.210.280.320.230.230.230.200.23GM(-6)刚木桑组灰岩0.340.230.250.240.310.260.340.270.320.380.300.280.260.280.29GM(-4)刚木桑组灰岩0.240.180.180.180.230.210.250.210.250.290.220.220.200.200.21GM(5)刚木桑组灰岩0.300.210.230.220.290.250.310.260.300.370.280.280.250.240.26GM(6)刚木桑组灰岩0.450.350.410.390.470.380.480.440.440.440.390.380.380.340.36GM(7)刚木桑组灰岩0.340.210.240.250.300.270.340.280.350.430.320.320.320.290.30GM(8)刚木桑组灰岩0.330.230.280.260.330.260.340.260.320.340.290.270.260.250.28GM(1)刚木桑组泥页岩1.491.111.331.231.320.931.281.251.151.041.021.030.990.991.00GM(2)刚木桑组泥页岩1.240.911.091.021.120.781.091.050.980.880.870.860.840.820.84GM(3)刚木桑组泥页岩1.070.810.980.921.010.710.980.950.890.790.820.800.790.750.78GM(4)刚木桑组泥页岩1.521.161.421.331.460.911.391.411.321.141.191.211.251.201.16

图3 西藏申扎地区5118高地地层剖面奥陶系—志留系灰岩和泥页岩微量元素及稀土元素PAAS标准化图(PAAS标准化参考值据Taylor et al.,1985) Fig.3 Trace and rare elements of limestone and mud shale of the 5118 section during Ordovician—Silurian period in Shenzha Area,Xizang(Tibet)(standard by PAAS,Taylor et al.,1985)

4 讨论

海相沉积物中许多微量元素(包括稀土元素),如U、V、Mo等氧化还原敏感微量元素,在沉积埋藏之后几乎不发生迁移,保存了其原始沉积组分,能较好地反映沉积环境特征,是古海洋环境研究的理想指标。然而沉积环境的开放与否、稀土元素来源、成岩作用和沉积埋藏之后的氧化作用对沉积岩微量/稀土元素含量影响甚大,因此可以利用微量元素和稀土元素含量的变化,对海相碳酸盐岩古海水原始信息保存性进行探究。

四是政工干部后继乏人。当前,有些基层单位从事思想政治工作的指导员已接近退休年龄,却物色不到合适的接班人;有些年轻的思想政治工作者不热心本职工作,甚至有些存有转换工作的思想。同时,随着企业改革的深化,思想政治工作部门不断被压缩、精减,致使从事思想政治工作的人员减少,缺乏后续力量。

4.1 岩石学特征分析

图4 西藏申扎地区5118高地奥陶系—志留系灰岩和钙质泥页岩照片 Fig.4 photographs of limestones and mud shales of the 5118 section in Shenzha Area,Xizang(Tibet) (a)灰岩,泥微晶结构,发育方解石细脉,德悟卡下组,薄片号ZM(16),正交偏光;(b)灰岩,细粉晶结构,德悟卡下组,薄片号GM(-20),阴极发光光;(c)钙质泥页岩野外露头;(d)钙质泥页岩,细纹层状结构,具定向性,薄片号GM(04),单偏光 (a)limestones,microcrystalline texture,calcite veins,Dewukaxia formation,ZM(16),cross-polarized light;(b)limestones,fine grained texture,Dewukaxia formation,GM(-20),cathodeluminescence;(c)the photograph of the field outcrop of calcareous shales;(d)calcareous shale,fine lines layer,GM(04),plane-polarized light

通过岩石样品观察、显微薄片的分析,主要包括岩石类型、颗粒大小、重结晶程度、自生的和陆源的组分、缝合线、细脉,以及与蚀变有关的表面风化作用等方面的分析研究表明,西藏申扎地区奥陶系—志留系主要发育灰—深灰色泥微晶灰岩(如图4a、b)和灰—灰黑色钙质泥页岩(如图4c、d),重结晶程度低、次生脉体较小较少(如图4a、d)、具有较暗或不发光的阴极发光特征(如图4b),可以初步认为该时期海相碳酸盐岩较好地保存了原始古海水的地球化学信息。

4.2 地球化学特征分析

10-2稀释液,在VRBA平板上有40个典型和可疑菌落,挑取其中10个接种BGLB肉汤管,证实有2个阳性管,则该样品的大肠菌群数为:40×2/10×102 mL=8×102 cfu/mL。

4.2.1 ∑REE和Y/Ho值

先将挑选出来的样品自然晾干,并用玛瑙研钵磨制成120目的粉末样品,然后在恒温干燥箱中于100~176℃下烘干2 h,置于干燥器中冷却。称取样品0.2 g于聚四氟乙烯坩埚中,结果精确到0.0001 g,然后加5 mL硝酸、5 mL氢氟酸和5 mL高氯酸,在电热板上逐步升温,控制温度176~200℃。待大量白烟冒完之后,温度控制在60~176℃,保温3 h以上,放置12 h。将样品在电热板上升温176~200℃,蒸至湿盐状,加入王水提取。最后将提取液转移到20 mL容量瓶中,用水稀释至刻度、混匀,同时做空白试验3份。本次分析测试是在成都理工大学基础化学实验室完成,检测的仪器及型号为电感耦合等离子体发射光谱仪(ICP-OES、美国PE 5300V)和电感耦合等离子体质谱仪(ICP-MS、美国PE ELANDRC-E)。

由稀土元素分析结果可知(表4),不同岩性的∑REE表现为明显的不同,奥陶系—志留系灰岩∑REE值明显低于泥页岩的∑REE值。这一结果与Maastrichtian灰岩、Kudankulam灰岩、阿拉伯海碳酸盐沉积物、Dalmiapuram灰岩和Dalmiapuram页岩等的∑REE含量相近(Madhavaraju et al.,2009)。Bau等(1996)提出,可以通过轻、重稀土的分馏程度以及∑REE值来判别铁锰氧化物和磷酸盐等对沉积岩稀土来源的影响。通过对西藏申扎地区5118高地剖面奥陶系—志留系灰岩和泥页岩分析表明(如表1),灰岩的LREE/HREE值分布范围为2.47~3.39,平均值为2.78,LaN/YbN值分布在1.08~1.54,平均值为1.27;泥页岩的LREE/HREE值分布范围为4.06~4.31,平均值为4.18,LaN/YbN值分布在1.27~1.52,平均值为1.43,均反映出轻稀土的富集、重稀土亏损的特征,加上较低的∑REE值,可以认为灰岩是不受铁锰氧化物和磷酸盐等的影响。其次,灰岩的∑REE含量为35~65 μg/g,远小于平均页岩(PAAS)的∑REE含量(184.8 μg/g)。再者,灰岩的Y/Ho值为30~38,与现代海水Y/Ho值(44)接近,这说明申扎地区奥陶系—志留系灰岩受陆源物质影响较小。

表4 5118高地地层剖面灰岩和泥页岩元素地球化学比值 Table 4 Geochemical ratios of limestone and mud shale of the 5118 section

样品编号地层岩性∑REELREE/HREE(La/Yb)SNMn/SrEr/NdY/HoδEuδCeGM(-30)德悟卡下组灰岩54.2162.5961.0801.1380.10332.2620.8150.738GM(-27)德悟卡下组灰岩59.9403.2101.3540.6090.08630.4750.8230.749GM(-26)德悟卡下组灰岩54.9372.8091.3380.7300.09233.2120.7970.727GM(-25)德悟卡下组灰岩66.6832.8391.2511.2280.09333.0570.7580.730GM(-24)德悟卡下组灰岩62.8702.8361.2371.4640.08931.9950.8320.718GM(-23)德悟卡下组灰岩61.3573.1881.3770.3120.08731.0450.7780.799GM(-22)德悟卡下组灰岩43.2162.5351.2871.0040.09934.8880.8010.716GM(-21)德悟卡下组灰岩39.5422.7601.5440.8360.09837.4240.8690.818GM(-20)德悟卡下组灰岩36.9782.6551.3440.7550.10035.7360.9040.793GM(-17)德悟卡下组灰岩36.2422.5511.1520.4750.10836.7500.8940.812GM(-15)德悟卡下组灰岩54.7752.5141.1551.1860.10634.3380.8700.754GM(-12)德悟卡下组灰岩46.3682.6741.2660.5200.10434.9000.8560.793GM(-10)刚木桑组灰岩37.1252.5511.2580.7640.10737.6360.9350.813GM(-6)刚木桑组灰岩49.5652.8281.2370.4880.09634.0100.8030.790GM(-4)刚木桑组灰岩36.6762.7291.1810.5120.10336.4630.9000.850GM(5)刚木桑组灰岩44.7642.6701.2500.4880.10435.8550.8460.819GM(6)刚木桑组灰岩72.4743.3861.3320.3050.08130.5770.8030.813GM(7)刚木桑组灰岩48.4652.4661.1551.1760.10836.1630.8410.744GM(8)刚木桑组灰岩49.9613.0941.3360.2810.08632.1330.7940.777平均值50.322.781.270.750.1034.150.840.78GM(1)刚木桑组泥页岩227.2244.3091.5040.5970.07027.8230.7110.789GM(2)刚木桑组泥页岩187.4004.2151.5160.5630.07127.5590.7070.781GM(3)刚木桑组泥页岩166.7474.1231.4280.6140.07326.2520.7190.787GM(4)刚木桑组泥页岩240.1684.0601.2660.7030.07725.9980.6410.791平均值205.384.181.430.620.0726.910.690.79

4.2.2 Er/Nd值

Er/Nd值可以较好地反映现代和古代海相体系轻、重稀土元素分馏作用的影响,较高的Er/Nd值揭示了海相碳酸盐岩对海水信息具有良好保存性(De Baar et al.,1988)。另有研究认为(German and Elderfield,1989;Bellanca et al.,1997),陆源碎屑物质的增加和成岩作用的影响会使得Er/Nd值降低到小于0.1。通过对研究区奥陶系—志留系灰岩和泥页岩的Er/Nd值分析表明(如图5a),除泥页岩的Er/Nd平均值小于0.1,灰岩的Er/Nd值均大于或等于0.1,这说明其对海水原始信息的保存性较好。

西藏申扎地区奥陶系—志留系灰岩和泥页岩微量元素分析测试结果(表2)均使用太古宙页岩值(PAAS)进行了标准化(Taylor et al.,1985),如图3a。结果表明,与PAAS值相比,大多亲石元素如Rb、Zr、Ba和V均表现为负亏损,其含量远远小于太古宙页岩标准值;Sr含量与其他元素相比明显富集,与PAAS值相比相差不大,波动幅度小。

4.2.3 Mn/Sr值

在微量元素中,Mn、Sr、Mg和Ca对于理解大气水成岩作用和白云岩化作用的蚀变程度是非常重要的。一般地,在大气水作用的影响下,Sr被带出,Mn被带入,因此可以用Mn/Sr值的变化来评估沉积岩遭受的成岩蚀变程度。综合前人研究成果,认为Mn/Sr<10代表了碳酸盐岩未遭受强烈的蚀变影响,更严格的标准是小于2~3(Kaufman et al.,1995)。经比较奥陶系—志留系灰岩和泥页岩的Mn/Sr值均小于2,平均比值仅0.86(如图5b),也说明其未遭受强烈的蚀变作用,较好地保存了原始沉积组分特征。

本次分析测试中采用单元素标准溶液(国家标准物质中心,1000-956;g/mL,用前现配所需浓度)逐步稀释得到混合标准,根据需要配置两个系列标准。常量元素采用ICP-OES检测,微量元素采用ICP-MS检测,配置标准溶液时配标准空白一份。ICP-OES条件:等离子体射频功率1200 W,等离子气(Ar)流量15 L/min,辅助气(Ar)流量0.2 L/min,雾化气(Ar)流量0.8 L/min,蠕动泵泵速1.5 mL/min,重复测量次数/3次,分析测试精度优于5%~10%。电感耦合等离子体原子发射光谱仪Inductively Coupled Plasma Optical Emission Spectrometry(ICP-OES)(公司:美国PE,型号:5300 V);ICP-MS条件:射频功率1300 W,载气(Ar)流量0.9 L/min,辅助气(Ar)流量1.2 L/min,等离子气(Ar)流量15 L/min;镜头电压6 V;脉冲阶段电压850 V;四极杆偏移标准0;检测区真空度1~215;10~6 Pa;样品提升率1.0 mL/min。

图5 西藏申扎地区5118高地奥陶系—志留系灰岩和泥页岩Er/Nd值(a)和Mn/Sr值(b) Fig.5 The Er/Nd ratio and Mn/Sr ratio of limestone and mud shale of the 5118 section in Shenzha Area,Xizang(Tibet)

图6 西藏申扎地区5118高地奥陶系—志留系灰岩和泥页岩元素特征值相关性图 Fig.6 The correlation between charactertistic values of limestone and mud shale of the 5118 section in Shenzha Area,Xizang(Tibet)

δCe值和δEu值通常被作为判断沉积时古水体的氧化—还原条件,但除此之外,成岩作用也可以改变Ce异常值,会导致δCe与δEu具有较好的相关性,δCe与∑(REE)具有较好的正相关(Shield et al.,2001)。通过对西藏申扎地区奥陶系—志留系灰岩和泥页岩分析研究,结果表明(如图6a,b),δCe与δEu没有明显的相关性,δCe与∑(REE)的相关性差,这就说明后期经历的成岩作用弱,对该时期形成的沉积岩影响较小。

李石磨找到学校,陶水旺早吓跑了。表姐浑身是血,瘫在桌子下。办公室的地上像刷了一层漆,红色的漆。表姐甚至能听到血咕咚咕咚朝外流的声音,她等着血上来,淹住她的身子,就当又来一场大水吧。表姐真是没脸活了。

综述所述,奥陶系—志留系灰岩和泥页岩蚀变程度弱,受陆源物质和后期成岩作用的影响较小,对原始古海水信息的保存较好。

5 结论

通过对西藏申扎地区奥陶系—志留系界线碳酸盐岩和泥页岩的常量元素、微量元素和稀土元素的地球化学分析,得出以下几点认识:

西藏申扎地区奥陶系—志留系灰岩和泥页岩常量元素分析测试结果表明(表1),由于岩性的不同,灰岩和泥页岩中Al2O3、CaO、Fe2O3、K2O、MgO、Na2O等的含量表现出明显的不同,除了CaO含量在灰岩中明显高于泥页岩,其他氧化物含量均表现为泥页岩明显高于灰岩。在26件灰岩样品中Al2O3、CaO、Fe2O3、K2O、MgO和Na2O等氧化物含量主要变化范围分别为:0.72%~2.21%、36.64%~47.11%、0.32%~1.61%、0.28%~1.16%、0.40%~0.72%和0.045%~0.049%,由此可以看出,灰岩中CaO含量高且较稳定,其他氧化物含量均较低,波动范围也较小,与现代海水Mg2+(1272×10-6)、K+(380×10-6)、Na+(10556×10-6)、Fe(0.01×10-6)、Ca2+(400×10-6)含量相比较,初步认为可以较好地代表沉淀时原始海水的元素组成。而泥页岩中Al2O3、CaO、Fe2O3、K2O、MgO、Na2O等氧化物含量的主要范围分别为12.06%~14.08%、16.64%~19.63%、4.47%~5.09%、2.75%~3.17%、1.12%~1.49%和1.16%~1.19%,各氧化物含量均较高,波动范围也较小,这可能与沉积环境的改变有关。

(1)该研究区奥陶系—志留系灰岩和泥页岩各金属氧化物含量稳定,灰岩中CaO含量较高,主要分布范围为36.64%~47.11%,与现代海水值相近,泥页岩各组分含量与PAAS标准值相近,认为可以较好地代表沉积时原始海水的元素组成。

(2)研究区奥陶系—志留系灰岩∑REE低(远小于PAAS值),表现为轻稀土的富集、重稀土的亏损,Y/Ho值与现代海水接近,可以认为该时期灰岩的沉积受陆源物质影响较小。

(3)通过Er/Nd值、δEu与δCe相关性、REE与δCe相关性,以及Mn/Sr值的分析判定,认为该研究区奥陶系—志留系灰岩和泥页岩蚀变程度弱,受后期成岩作用的影响较小,对古海水原始信息保存较好。

(4)海相碳酸盐岩元素地球化学特征的研究,是探究古代海相碳酸盐岩古海水原始信息保存性的一种有效方法,碳酸盐岩古海水原始信息保存性的研究,可将元素地球化学与其他常规方法(如手标本观察、普通薄片观察鉴定和阴极发光分析等)、有机地球化学、同位素地球化学等相结合来进行综合分析,从而探究其古海水原始信息的保存性。

致谢:特别感谢匿名审稿专家给予了宝贵的意见和建议,中肯又具体,本人获益匪浅。感谢成都理工大学沉积地质研究院伊海生教授团队的其他成员,如张帅、李高杰、蔡占虎、杨嘉宝、金峰、陈云、李堃宇、李鑫等,在野外剖面测量、样品采集,以及室内样品挑选、加工处理等方面工作付出了辛劳,在此一并表示衷心的感谢。此外,感谢责任编辑刘志强同志在论文刊出过程中耐心细致的指导。

参考文献/ References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract;the literature whose publishing year followed by a “#” is in Chinese without English abstract)

程成,李双应,赵大千,颜玲.2015.扬子地台北缘中上二叠统层状硅质岩的地球化学特征及其对古地理,古海洋演化的响应.矿物岩石地球化学通报,34(1):155~166.

程立人,张予杰,张以春.2004.西藏申扎地区古生代地层研究新进展.地质通报,23(9~10):1018~1022.

冯杨伟,姜亭,宋博,牛亚卓.2017.中哈边境伊犁地区中二叠统沉积环境的地球化学判别.地质学报,91(4):942~953.

胡忠贵,郑荣才,胡九珍,文华国,李瑜,文其兵,徐发波.2009.川东—渝北地区黄龙组白云岩储层稀土元素地球化学特征.地质学报,83(6):782~790.

胡作维,黄思静,黄可可,孙伟,龚业超.2010.四川东部华蓥山三叠系海相碳酸盐岩对海水信息的保存性评估.中国地质,37(5):1374~1382.

黄枝高.1982.西藏申扎地区奥陶纪末期和志留纪早期的笔石组合及奥陶—志留系分界.青藏高原地质文集,5:004.

李江海,姜洪福.2013.全球古板块再造,岩相古地理及古环境图集.北京:地质出版社:23~36.

林宝玉.1981.西藏申扎地区古生代地层的新认识.地质论评,27(4):353~354.

林宝玉.1982.西藏北部申扎地区的Hirnantia—Dalmanitina层,兼论奥陶志留系的分界.青藏高原地质文集,5:53~58.

林宝玉.1983.西藏申扎地区古生代地层.青藏高原地质文集,5:53~58..

鲁洪波,姜在兴.1999.稀土元素地球化学分析在岩相古地理研究中的应用.石油大学学报:自然科学版,23(1):6~8.

明承栋,侯读杰,赵省民,宋健,邓坚,吴赛赛,李经辉.2015.内蒙古东部索伦地区中二叠世哲斯组古环境与海平面相对升降的地球化学记录.地质学报,89(8):1484~1494.

宋健,赵省民,陈登超,邓坚,苗忠英,明承栋,陆程.2012.内蒙古西部额济纳旗及邻区二叠纪暗色泥岩微量元素和稀土元素地球化学特征.地质学报,86(11):1773~1780.

陶刚,杨文光,朱利东,李智武,解龙,范维,和源,刘和,李超.2016.羌塘地块南缘新近系唢呐湖组湖相喷流岩岩石学特征及沉积模式.矿物岩石,36(1):72~81.

吴仕强,朱井泉,胡文瑄,张军涛,王小林,苏永斌.2009.塔里木盆地寒武系—奥陶系白云岩稀土元素特征及其成因意义.现代地质,23(4):638~647.

夏代祥.1983.藏北湖区中扎一带的古生代地层.青藏高原地质文集,5:106~120.

谢其锋,周立发,蔡元峰,刘羽,刘志武,王苏里.2015.南祁连盆地二叠系海相烃源岩地球化学特征及其对物源属性和古环境的约束.地质学报,89(7):1288~1301.

熊国庆,江新胜,蔡习尧,伍皓.2010.藏南白垩系泥页岩微量、稀土元素特征及氧化—还原环境分析.地球科学进展,25(7):730~745.

杨兴莲,朱茂炎,赵元龙,张俊明,郭庆军,皮道会.2008.黔东震旦系—下寒武统黑色岩系稀土元素地球化学特征.地质论评,54(1):3~15.

张金亮,张鑫.2006.塔里木盆地志留系古海洋沉积环境的元素地球化学特征.中国海洋大学学报 (自然科学版),36(2):200~208.

张树岐,曲永贵,郑春子.2003.西藏北部申扎地区志留纪岩石地层和生物地层.地质通报,22(11~12):964~969.

张天福,孙立新,张云,程银行,李艳锋,马海林,鲁超,杨才,郭根万.2016.鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义.地质学报,90(12):3454~3472.

周长勇,张启跃,吕涛,胡世学,谢韬,文芠,黄金元.2014.云南中三叠世罗平生物群产出地层的地球化学特征和沉积环境.地质论评,60(2):285~298.

朱如凯,郭宏莉,何东博,罗忠,邵龙义.2002.中国西北地区石炭系泥岩稀土元素地球化学特征及其地质意义.现代地质,16(2):130~136.

Armstrong-Altrin J S,Verma S P,Madhavaraju J,Lee Y I,Worden R S.2003.Geochemistry of upper Miocene Kudankulam limestones,southern India.International Geology Review,45(1):16~26.

Bakkiaraj D,Nagendra R,Nagarajan R,Armstrong-Altrin J S.2010.Geochemistry of sandstones from the Upper Cretaceous Sillakkudi Formation,Cauvery basin,southern India:implication for provenance.Journal of the Geological Society of India,76(5):453~467.

Bau M.1996.Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho,Zr/Hf,and lanthanide tetrad effect.Contributions to Mineralogy and Petrology,123(3):323~333.

Bellanca A,Masetti D,Neri R.1997.Rare earth elements in limestone/marlstone couplets from the Albian—Cenomanian Cismon section (Venetian region,northern Italy):assessing REE sensitivity to environmental changes.Chemical Geology,141(3):141~152.

Cheng Cheng,Li Shuangying,Zhao Daqian,Yanling.2015&.Geochemical characteristics of the Middle—Upper Permian bedded cherts in the northern margin of the Yangtze block and its response to the evolution of paleogeography and paleo-ocean.Bulletin of Mineralogy,Petrology and Geochemistry,34(1):155~166.

Cheng Liren,Zhang Yujie,Zhang Yichun.2004&.New progress in the study of paleozoic strata in the Xainza area Tabet.Geological Bulletin of China,23(9~10):1018~1022.

De Baar H J,German C R,Elderfield H,Elderfield H,Van Gaans P.1988.Rare earth element distributions in anoxic waters of the Cariaco Trench.Geochimica et Cosmochimica Acta,52(5):1203~1219.

Elderfield H,Pagett R.1986.Rare earth elements in ichthyoliths:variations with redox conditions and depositional environment.Science of the Total Environment,49:175~197.

Feng Yangwei,Jiang Ting,Song Bo.2017&.Geochemical discrimination of middle Permian sedimentary environment of the Yili area,the border between China and Kazakhstan.Acta Geologica Sinica,91(4):942~953.

Frimmel H E.2009.Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator.Chemical Geology,258(3):338~353.

German C R,Elderfield H.1989.Rare earth elements in Saanich Inlet,British Columbia,a seasonally anoxic basin.Geochimica et Cosmochimica Acta,53(10):2561~2571.

Hu Zhonggui,Zheng Rongcai,Hu Jiuzhen,Wen Huaguo,Li Yu,Wen Qibing,Xu Fabo.2009&.Geochemical characteristics of rare earth elements of Huanglong formation dolomites reservoirs in eastern Sichuan—northern Chongqing area.Acta Geologica Sinica,83(6):782~790.

Hu Zuowei,Huang Sijing,Huang Keke,Sun Wei,Gong Yechao.2010&.Preservative evaluation of coeval seawater information for the Triassic marine carbonate rocks in the Huaying mountain,eastern Sichuan.Geology In China,37(5):1374~1382.

Huang Zhigao.1982#.Latest Ordovician and earliest Silurian graptolite assemblages of Xainza district,Xizang (Tibet)and Ordovician—Silurian boundary.Contribution to the Geology of the Qinghai—Xizang (Tibet)Plateau,5:004.

Kamber B S,Webb G E.2001.The geochemistry of late Archaean microbial carbonate:implications for ocean chemistry and continental erosion history.Geochimica et Cosmochimica Acta,65(15):2509~2525.

Kato Y,Nakao K,Isozaki Y.2002.Geochemistry of late Permian to early Triassic pelagic cherts from southwest Japan:implications for an oceanic redox change.Chemical Geology,182(1):15~34.

Kaufman A J,Knoll A H.1995.Neoproterozoic variations in the C-isotopic composition of seawater:stratigraphic and biogeochemical implications.Precambrian Research,73(1):27~49.

Kemp R A,Trueman C N.2003.Rare earth elements in Solnhofen biogenic apatite:geochemical clues to the palaeoenvironment.Sedimentary Geology,155(1):109~127.

Li Jianghai,Jiang Hongfu.2013#.The Atlas of Global Paleoplate Reconstruction,Lithofacies Paleogeography and Palaeoenvironment.Beijing:Geological Publishing House:23~36.

Lin Baoyu.1981#.A new recognition of the palaeozoic stratigraphy in Xainza County Xizang(Tibet).Geological Review,27(4):353~354.

Lin Baoyu.1982#.The Hirnantia—Dalmanitina Beds From Xianza Distract,North Xizang(Tibet)With Special Reference to the Boundary Between The Ordovician and Silurianststem.Contribution to the Geology of the Qinghai—Xizang (Tibet)Plateau,5:53~58.

Lin Baoyu.1983#.Palaeozoic Stratigraphy in Xainza County,Xizang(Tibet).Contribution to the Geology of the Qinghai—Xizang (Tibet)Plateau,5:53~58.

Liu Y G,Miah M R U,Schmitt R A.1988.Cerium:a chemical tracer for paleo-oceanic redox conditions.Geochimica et Cosmochimica Acta,52(6):1361~1371.

Lu Hongbo,Jiang Zaixing.1999&.Application of geochemical analysis of rare earth elements in the study of iithofacies paleogeography.Journal of the University of Petroleum,China,23(1):6~8.

Madhavaraju J,González-León C M,Lee Y I,Armstrong-Altrin J S,Reyes-Campero L M.2010.Geochemistry of the mural formation (Aptian—Albian)of the Bisbee group,Northern Sonora,Mexico.Cretaceous Research,31(4):400~414.

Madhavaraju J,Lee Y I.2009.Geochemistry of the Dalmiapuram formation of the Uttatur group (early Cretaceous),Cauvery basin,southeastern India:Implications on provenance and paleo-redox conditions.Revista Mexicana de Ciencias Geológicas,26(2):380~394.

Madhavaraju J,Ramasamy S.1999.Rare earth elements in limestones of Kallankurichchi formation of Ariyalur group,Tiruchirapalli Cretaceous,Tamil Nadu.Geological Society of India,54(3):291~301.

Ming Chengdong,Hou dujie,Zhao Xingmin,Song Jian,Deng Jian,Wu Saisai,Li Jinghui.2015&.The geochemistry record of paleoenvironment and sea-level relative movement of middle Permian Zhesi formation in eastern Inner Mongolia.Acta Geologica Sinica,89(8):1484~1494.

Murray R W,Ten Brink M R B,Gerlach D C,Russ Iii G P,Jones D L.1991.Rare earth,major,and trace elements in chert from the Franciscan complex and Monterey group,California:assessing REE sources to fine-grained marine sediments.Geochimica et Cosmochimica Acta,55(7):1875~1895.

Nath B N,Roelandts I,Sudhakar M,Pluger W L.1992.Rare earth element patterns of the Central Indian Basin sediments related to their lithology.Geophysical Research Letters,19(12):1197~1200.

Piper D Z.1974.Rare earth elements in the sedimentary cycle:a summary.Chemical Geology,14(4):285~304.

Sheehan P M.2001.The late Ordovician mass extinction.Annual Review of Earth and Planetary Sciences,29(1):331~364.

Song Jian,Zhao Xingmin,Cheng Dengchao,Deng Jian,Miao Zhongying,Ming Chengdong,Lu Cheng.2012&.Rare earth and trance elements geochemical chararistics of The dark Permian mudstones in Ejinaqi and its surrounding areas,Western Inner Mongolia.Acta Geologica Sinica,86(11):1773~1780.

Tao Gang,Yang Wenguang,Zhu Lidong,Li Zhiwu,Xie Long,Fan Wei,He Yuan,Liu He,Li Chao.2016&.Lithological characteristics and sedimentary models of the Lacustrine hydrothermal sedimentary rock of the Neogene Suonahu formation on the Southern edge of Qiangtang.Mineral Petrol,36(1):72~81

Taylor S R,McLennan S M.1985.The continental crust:its composition and evolution.Blackwell,Oxford,312.

Toyoda K,Nakamura Y,Masuda A.1990.Rare earth elements of Pacific pelagic sediments.Geochimica et Cosmochimica Acta,54(4):1093~1103.

Wang Y L,Liu Y G,Schmitt R A.1986.Rare earth element geochemistry of south Atlantic deep sea sediments:Ce anomaly change at~ 54 My.Geochimica et Cosmochimica Acta,50(7):1337~1355.

Wani H,Mondal M E A.2010.Petrological and geochemical evidence of the Paleoproterozoic and the Meso—Neoproterozoic sedimentary rocks of the Bastar craton,Indian Peninsula:Implications on paleoweathering and Proterozoic crustal evolution.Journal of Asian Earth Sciences,38(5):220~232.

Webb G E,Kamber B S.2000.Rare earth elements in Holocene reefal microbialites:a new shallow seawater proxy.Geochimica et Cosmochimica Acta,64(9):1557~1565.

Wu Shiqiang,Zhu Jingquan,Hu Wenxuan,Zhang Juntao,Wang Xiaolin,Su Yongbin&.2009.Rare earth element geochemistry charactristics of Cambrian Ordovician dolostones in the Tarim basin and their implications for the origin.Geoscience,23(4):638~647.

Xia Daixiang.1983#.Palaeozoic Stratigraphy of Xainza Area,Northern Xizang(Tibet).Contribution to the Geology of the Qinghai—Xizang (Tibet)Plateau,5:106~120.

Xie Qifeng,Zhou Lifa,Cai Yuanfeng,Liu Yu,Liu Zhiwu,Wang Suli.2015&.Geochemiacal charastics of Permian marine source rocks and constraints of the provenance and paleoenvirment in the south Qilian basin,Qinghai Province.Acta Geologica Sinica,89(7):1288~1301.

Xiong Guoqing,Jiang Xinsheng,Cai Xiyao,Wu Hao.2010&.The characteristics of trace element and REE geochemistry of the cretaceous mudrocks and shales from southern Tibet and its analysis of redox condition.Advances In Earth Science,25(7):730~745.

Yang Xinglian,Zhu Maoyan,Zhao Yuanlong,Zhang Junming,Guo Qingjun,Pi Daohui.2008&.REE geochemical characteristics of the Ediacaran—Lower Cambrian black rock series in eastern Guizhou.Geological review,54(1):3~15.

Zhang Jinliang,Zhang Xin.2006&.The element geochemical feature ancient oceanic sedimentary environments in the Silurian prriod in the Tarim basin.Periodical of Ocean University Of China,36(2):200~208.

Zhang Shuqi,Qu Yonggui,Zheng Chunzi.2003&.Silurian lithostratigraphy and biostratigraphy in the Xainza Area,Northern Tibet.Geological Bulletin Of China,22(11~12):964~969.

Zhang Tianfu,Sun Lixin,Zhang Yun,Cheng Yinhang,Li Yanfeng,Ma Haillin,Lu Chao,Yang Cai,Guo Genwan.2016&.Geochemical characteristics of the Jurassic yan'an and zhiluo formations in the northern margin of ordos basin and their paleoenvironmental implications.Acta Geologica Sinica,90(12):3454~3472.

Zhou Changyong,Zhang Qiyue,Lu Tao,Hu Shixue,Xie Tao,Wen Wen,Huang Jinyuan.2014&.Geochemical characteristics and sedimentary environments of the fossiliferous layers of middle Triassic Luoping Biota,Yunnan Province.Geological Review,60(2):285~298.

Zhu Rukai,Guo Hongli,He Dongbo,Luo Zhong,Shao Longyi.2002&.The ree geochemical characteristics of carboniferous mudstone in northwest area.Geoscience,16(2):130~136.

袁桃,伊海生,兰叶芳,蒋艳霞
《地质论评》 2018年第03期
《地质论评》2018年第03期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号