更全的杂志信息网

肥东杂岩的锆石U-Pb年龄及其地质意义 ——兼论下扬子地区新元古代岩浆活动历史

更新时间:2016-07-05

华南板块是华夏与扬子板块在新元古代早期沿着江南造山带碰撞、拼合而形成的,随后在新元古代中—晚期又经历了大规模的岩浆活动与大陆裂谷发育(Li Zhengxiang et al.,1995,1999,2002,2003,2007,2008;Li Xianhua et al.,2003,2008;Wang Xiaolei et al.,2004;Zheng Yongfei et al.,2008;Zhao Guochun and Cawood,2012)。作为罗迪尼亚(Rodinia)超大陆的重要组成部分(Li Zhengxiang et al.,1995,1999,2008;Li Xianhua,1999;Wang Jian and Li Zhengxiang,2003),华南板块在新元古的演化历史是认识该超大陆形成至裂解过程的重要窗口,具有重要的科学意义。

虽然关于江南造山带的碰撞造山时间仍然存在着不同的认识,但近年来多数学者认为发生在约830 Ma(Zhao Junhong et al.,2011;Zhao Guochun and Cawood,2012;Zhang Shaobing and Zheng Yongfei,2013)。在此碰撞造山之前,大洋岩石圈的俯冲使得扬子板块东南缘出现了新元古代早期的弧岩浆活动(Wang Xiaolei et al.,2004,2006;Li Xianhua et al.,2009;Zhao Junhong et al.,2011;舒良树,2012;Zhao Guochun,2015),但其活动空间范围并没有得到很好的限定。江南造山带及其周缘地区在新元古代中—晚期发生了强烈的伸展活动,广泛发育了830~700 Ma的火成岩,呈现为3个岩浆活动峰期(825 Ma、800 Ma、750 Ma;Li Zhengxiang et al.,1995,1999,2002,2003,2007 ;Li Xianhua et al.,2003,2009;Wang Xiaolei et al.,2004,2006;Zhao Junhong et al.,2011;薛怀民等,2010,2012b;Zhao Guochun,2015)。然而,这3个岩浆活动峰期,特别是825 Ma的峰期,究竟是后造山伸展还是Rodinia超大陆裂解的结果,还存在着不同的观点(Li Zhengxiang et al.,1995,1999,2002,2003,2007;Li Xianhua et al.,2003,2009;Wang Xiaolei et al.,2004,2006;Zhao Junhong et al.,2011;Zhang Shaobing and Zheng Yongfei,2013;Zhao Guochun,2015)。沿着江南造山带及其周边地区,伴随着这些岩浆活动,发育了北东向延伸的南华裂谷,其中充填了巨厚的火山—沉积岩系(Li Zhengxiang et al.,2003;Wang Jian and Li Zhengxiang,2003;汪正江等,2015)。但是,南华裂谷的空间范围,特别是向东北方向的延伸情况,长期没有明确的限定。

图1下扬子西缘地区新元古界露头和采样位置(a)及大地构造索引图(b)(锆石年龄来源见表2) Fig.1 Outcrops and sampling location of Neoproterozoic rocks along the western margin of the Lower Yangtze region (a)and tectonic index map (b)(Sources of the zircon ages are listed in Table 2)

扬子板块西缘与西北缘发育有1000~725 Ma的岩浆岩 (Zhou Meifu et al.,2002,2006a,b;Zhao Junhong et al.,2011;Zhou Zhenju et al.,2016),并伴生同期的盆地沉积,曾被称为康滇裂谷与扬子北缘裂谷(Li Zhengxiang et al.,2003)。然而,新元古代早期(1000~860 Ma)岩浆活动的不断发现,被认为存在着外部大洋俯冲导致的活动陆缘弧,称之为攀西—汉南弧 (Zhou Meifu et al.,2002,2006a,b;Zhao Junhong et al.,2011;Chen Zhihong and Xing Guangfu et al,2016),向东可能延入大别造山带(Zhao Guochun,2015;Zhu Guang et al.,2017)。然而,这一活动陆缘弧在郯庐断裂带以东下扬子地区的延伸状况,仍然不明确。

比较不同服药模式的两组患者所取得的治疗效果,可见中西药结合的治疗方式,能够取得更显著的治疗效果,两组患者治疗效果对比,差异有统计学意义(P<0.05),西药治疗组21例,十分有效8,基本有效5,无效8,总体有效率61.90%;中西药结合治疗组21例,十分有效12,基本有效7,无效2,总体有效率90.48%。

由上述可见,全面认识华南板块上新元古代岩浆活动的时—空范围及其性质是认识其大陆构造过程的关键方面。对于扬子板块,以往这方面的研究集中在露头较好的江南造山带与西北边缘。而扬子板块东北部的下扬子地区,由于大面积的后期沉积覆盖,其新元古代地质历史过去了解的很少。近年来,在下扬子西缘地区,陆续发现存在一系列新元古代岩石,从而为认识这一地区新元古代地质作用与构造背景提供了窗口。本文通过地质调查,对下扬子西缘地区出露的新元古代肥东杂岩进行了锆石U-Pb年代学分析。再结合前人已有的数据,通过区域对比,综合分析下扬子地区新元古代岩浆活动规律与构造背景,为全面地认识华南板块新元古代大地构造过程与动力学背景提供重要的信息。

1 区域地质概况

下扬子地区是指郯庐断裂带以东、苏鲁造山带以南、江南造山带以北的地区,主体为扬子板块所占据(图1)。下扬子地区的扬子板块,其西界为北东走向的郯庐断裂带,自南向北分别相邻大别造山带与华北板块。华南与华北板块在中三叠世沿着大别—苏鲁造山带发生陆—陆碰撞(Li Shuguang et al.,1999)。郯庐断裂带起源于此碰撞造山过程中(Yin An and Nie Shangyou,1993;Zhu Guang et al.,2009;Zhao Tian et al.,2016),随后经历了晚中生代的左行平移活动(Zhu Guang et al.,2005,2010a)与白垩—古近纪的伸展活动 (Zhu Guang et al.,2010b,2012)。

模块是模块化设计的基本元素,是一种实体的概念,如把模块定义为一组同时具有相同功能和相同结合要素,具有不同性能或用途甚至不同结构特征,但能互换的单元[2-5].模块化一般是指使用模块的概念对设备或系统进行规划设计、生产组织.设备的模块化设计是在对一定范围内的不同功能或相同功能不同性能、不同规格的设备进行功能结构分析的基础上,划分并设计出一系列模块,通过模块的选择和组合可以构成不同的设备,以满足发射场不同需求的设计方法.

下扬子地区的扬子板块,普遍发育了震旦—中三叠世海相盖层,上覆一系列中—新生代陆相盆地。其中下震旦统内发育了苏家湾组冰碛岩(Zhang Qing et al.,2007)。区内震旦纪以来岩浆活动主要出现在早白垩世与新生代,前者主要形成中—酸性侵入岩与火山岩 (薛怀民等,2012a,2013),而后者皆为玄武岩。该区扬子板块上,新元古代岩石仅出露在西缘,沿着郯庐断裂带东侧呈北东向条带状展布(图1a)。这些新元古代岩石包括张八岭群、肥东杂岩和董岭杂岩。大别与苏鲁造山带之间、郯庐断裂带东侧的新元古代岩石出露区,被称之为张八岭隆起,其北段皆出露张八岭群,而南段主要出露肥东杂岩。张八岭群还出露在庐江北部地区与大别造山带东南侧的江塘至黄梅一带。区内董岭杂岩仅出露在洪镇变质核杂岩内,也呈北东向条带状展布。已有的研究表明(石永红等,2009;Zhao Tian et al.,2014,2016;刘硕等,2016),下扬子西缘地区这些新元古代岩石,基本上代表了原地出露的岩石,它们的相对空间位置并没有被郯庐断裂带后期平移所显著改变。

图2 肥东杂岩锆石U-Pb定年样品野外及显微照片 Fig.2 Field and microscopic photos for zircon U-Pb dating samples from the Feidong Complex (a—b)花岗片麻岩样品(FD01)野外及显微照片;(c—d)含黑云母花岗片麻岩样品(FD02)野外及显微照片 (a—b)Field and microscopic photos for the granitic gneiss sample (FD01);(c—d)Field and microscopic photos for the biotite-bearing granitic gneiss sample (FD02)

为了进一步限定肥东杂岩的原岩时代与源区年代学信息,本次工作中在张八岭隆起南段北部两处分别采集了花岗片麻岩样品(FD01)和含黑云母花岗片麻岩样品(FD02;图1a),在室内进行了锆石LA-ICP-MS U-Pb定年分析。这2个样品的野外(图2a、c)与显微镜下(图2b、d)特征,显示它们皆为变质、变形样品,卷入了郯庐断裂带早白垩世初北东向左行走滑韧性剪切带变形(Zhu Guang et al.,2005)。这两个样品在露头上呈现北东走向的陡立片麻理,具有平缓的矿物拉伸线理,并发生了一定程度的糜棱岩化。

3.2.2 830820 Ma岩浆活动对比与意义

出露于洪镇变质核杂岩核部的董岭杂岩,呈长约15 km、宽约2 km的条带状展布。洪镇变质核杂岩为早白垩世形成的伸展构造,正是这期伸展隆升使其核部杂岩出露至地壳浅部(Zhu Guang et al.,2010b;刘硕等,2016))。由于变质核杂岩的抬升作用,使深部岩石抬升至浅部,我们看到董岭杂岩普遍经历了高绿片岩相变质,岩性主要为一套变沉积岩—变岩浆岩组合,包括黑云母片岩、白云母片岩、云母石英片岩、花岗质片麻岩、斜长角闪岩和长石石英片岩。董岭杂岩以往被认为属于古元古代变质基底(Xing Fengming et al.,1994;Grimmer et al.,2003),但是近年来的锆石U-Pb定年表明它们主体的原岩时代为新元古代(Zhang Shaobing et al.,2015;王继林和何斌,2016;刘硕等,2016)。其中变形—变质岩体侵位年龄为829~812 Ma(刘硕等,2016),变火山岩原岩年龄为761~754Ma(刘硕等,2016),变沉积岩最年轻碎屑锆石(最大沉积)年龄为806~731 Ma(Zhang Shaobing et al.,2015;刘硕等,2016)。

据悉,作为实力雄厚、经验丰富的世界矿业巨头,BHP旗下的主要矿产项目都具有规模大、成本低、寿命长的特征,同时由于加拿大距离中国海运运距较短,Jason项目对中农进口钾肥从原产地、品质、物流等方面都是关键性的补充。而中农控股作为国内化肥流通主要力量,渠道资源丰富。随着销售网络的不断扩大和加深,中农控股更加确立了稳定并扩大供应体系的战略,与BHP的签约为公司钾肥货源提供了新的强有力的支撑,进一步完善了公司钾肥供应体系。

2 锆石U-Pb定年

2.1 样品描述

张八岭群曾被划分为下部的西冷组和上部的北将军组。近年的研究表明,北将军组应归属为下震旦统(Zhao Tian et al.,2014,2016),因而后文所述张八岭群相当于早年的西冷组。区内的张八岭群由于出露层次浅,变形主要为脆韧性变形,变形温度在350~400℃,主要呈现中绿片岩相变质(Zhang Qing et al.,2007;Zhao Tian et al.,2014,2016),为变质中—酸性火山岩与变质碎屑岩互层。张八岭群岩石类型主要为长石石英片岩、钠闪石片岩、白云钠长石英片岩、白云石英片岩、白云母片岩等,局部夹千枚岩。一系列白云母40Ar/39Ar定年结果,指示它们的变形与变质发生在中三叠世,属于郯庐断裂带起源期活动的结果(Zhang Qing et al.,2007;Zhao Tian et al.,2016)。近年来对这些张八岭群内变火山岩的锆石LA-ICP-MS U-Pb定年结果,指示它们的原岩年龄为767~748 Ma(姜慧超等,2012;Zhao Tian et al.,2014;赵田等,2014)。由此可见,下扬子地区张八岭群属于扬子板块的底部盖层,而非前人认为的变质基底。

图3 肥东杂岩片麻岩样品部分锆石CL图像和Th/U值 Fig.3 Cathodoluminescence images and Th/U rations of some zircons from gneiss samples of the Feidong Complex

2.2 测试方法

如前文所述,下扬子地区1000~860 Ma的岩浆活动十分微弱或几乎不发育(图5,6a)。这指示下扬子地区不应属于攀西—汉南弧的一部分。众所周知,在华北与扬子板块于中三叠世发生陆—陆碰撞中,后者向北俯冲于华北板块之下,并沿着郯庐断裂带被撕裂(板片撕裂模式,Zhao Tian et al.,2016)。因而,目前的下扬子西缘地区,并非原始的扬子板块边缘,而是属于板块内部。当时的下扬子板块北缘已在苏鲁造山带内发生过俯冲与折返。苏鲁造山带内海州群所记录的新元古代早期岩浆活动记录(Zhou Jianbo et al.,2012),也支持这一推断。

2.3 定年结果

本次定年的两个片麻岩样品,野外现象指示原岩应为侵入岩。这两个样品用于定年的锆石,其CL图像(图3)显示自形程度高,无色透明到半透明长柱状,长短轴之比多为2∶1~3∶1,具有岩浆震荡生长环带。在球粒陨石标准化稀土元素配分图中(图4g、h),两样品LREE亏损,HREE富集,具明显的Ce正异常和Eu负异常。所测试锆石的Th/U 值普遍大于0.3(图4e、f)。这一系列特征均指示所测试锆石为岩浆成因锆石。

花岗片麻岩样品(FD01),本次共获得20个谐和的年龄值,介于762~833 Ma,显示为谐和线附近唯一的年龄集中区。这20个分析点的206Pb/238U加权平均年龄值为805±9 Ma (MSWD=0.87;图4a)。本文解释这一年龄值为原岩侵位时间。年龄频谱图显示~805 Ma的年龄峰值(图4c)。

含黑云母花岗片麻岩样品(FD02),共获得24个谐和的年龄值,介于783~2494 Ma。其中较年轻的一组年龄集中区(783~839 Ma,15个分析点),给出206Pb/238U加权平均年龄值为804±10 Ma (MSWD=0.66;图4b)。本文解释该值代表了原岩的侵位年龄。该样品较老的测试值(852~2494 Ma),为继承或捕获锆石年龄。年龄频谱图显示最明显峰值年龄为804 Ma(图4d)

总之,本次定年结果,获得了两个肥东杂岩片麻岩样品的原岩侵位时间为805~804 Ma,指示了新元古代中期岩浆活动。

图4 肥东杂岩片麻岩样品锆石U-Pb年龄谐和图、频谱图、Th/U值图和稀土元素球粒陨石标准化配分图 Fig.4 Zircon U-Pb concordia,age spectra,Th/U rations and chondrite-normalized REE patterns for gneiss samples from the Feidong Complex

3 问题讨论

3.1 下扬子地区前寒武纪岩浆活动历史

将本次与前人锆石定年结果相结合,可以限定下扬子地区新元古代岩浆活动历史,分析空间变化规律。再利用锆石定年中所获得的继承、捕获与碎屑锆石年龄信息,还可以揭示下扬子地区更早期岩浆活动历史。

3.1.1 新元古代岩浆活动历史

通过对下扬子西缘地区一系列新元古代岩石的锆石原位U-Pb定年(表2),揭示了区内新元古代岩浆活动历史。

在学者们的观点和理论的基础上,可以得出财税政策对企业科技创新的激励主要是通过三个方面来实现的:一是财政科技拨款和科技风险投资;二是税收优惠政策;三是政府采购。根据企业技术创新的周期将整个技术创新过程分为四个阶段:一是技术研究与开发阶段;二是技术成果转化及推广阶段;三是技术产品产业化生产阶段;四是技术产品销售阶段。不同阶段,财税激励政策发挥作用不同。

一系列锆石定年结果表明,下扬子地区张八岭群变火山岩的原岩时代为767~748 Ma (姜慧超等,2012;赵田等,2014;Zhao Tian et al.,2014),峰期为750 Ma (表2)。张八岭群中—酸性火山岩与变沉积岩互层,显示为裂谷环境产物。在时间上,这期裂谷发育与岩浆活动较为集中,一系列定年结果皆显示为750 Ma左右。在空间上,下扬子西缘地区从北向南皆存在着张八岭群(图1a),并具有一致的发育时间。在大别—苏鲁造山带内,也存在着岩性与时代上与张八岭群相当的变质岩(Zhou Jianbo et al.,2012;赵田等,2014),分别称为张八岭群与海州群。推断当时下扬子地区普遍存在这期(约750 Ma)裂谷与相应的岩浆活动。

肥东杂岩已有的锆石年龄来自变形、变质岩体,指示了岩浆侵位的时间。这些锆石U-Pb年龄值为812~745 Ma (康涛等,2013;Zhao Tian et al.,2014;Liu Lei et al.,2015),可分为两期(812~794 Ma和767~745 Ma),峰期分别为800 Ma和750 Ma(表2)。峰期为750 Ma岩浆(侵位)活动显然与区内张八岭群火山喷发同期。

表2下扬子地区新元古代岩石锆石U-Pb定年结果统计表 Table 2 Zircon U-Pb dating results of Neoproterozoic rocks in the Lower Yangtze region

点号经纬度采样位置与岩组岩石类型原岩年龄(Ma)数据来源BH632°27′33.1″, 118°01′45.5″北段张八岭群白云长石石英片岩753±3Zhao Tian et al., 2014BH732°14′47.0″, 117°56′38.9″北段张八岭群白云长石石英片岩754±3Zhao Tian et al., 2014ZBL10832°33′53.3″, 118°22′58.7″北段张八岭群长英质云母片岩751±7姜慧超等, 2012ZBL10932°33′55.5″, 118°22′28.1″北段张八岭群长英质云母片岩767±15姜慧超等, 2012DT77331°24′49.0″, 117°22′11.6″庐江张八岭群白云长石石英片岩750±5赵田等, 2014DT77431°20′23.4″, 117°20′8.0″庐江张八岭群绿泥长石石英片岩751±6赵田等, 2014DT77531°20′22.3″, 117°18′50.4″庐江张八岭群白云长石石英片岩749±6赵田等, 2014DT78030°21′42.6″, 116°19′36.6″黄梅—江塘张八岭群白云长石石英片岩748±5赵田等, 2014DT78130°16′20.1″, 116°12′13.7″黄梅—江塘张八岭群白云长石石英片岩748±9赵田等, 2014DT78230°14′38.4″, 116°6′1.5″黄梅—江塘张八岭群长石石英片岩750±8赵田等, 2014DT78330°8′3.70″, 115°59′22.9″黄梅—江塘张八岭群白云母片岩751±5赵田等, 2014FD0131°57′24.2″, 117°43′20.5″肥东杂岩花岗片麻岩805±9本文FD0231°56′35.9″, 117°42′49.5″肥东杂岩含黑云母花岗片麻岩804±10本文BH831°51′00.0″, 117°38′37.9″肥东杂岩黑云花岗片麻岩746±9Zhao Tian et al., 2014BH931°47′43.3″, 117°33′21.5″肥东杂岩(董岗岩体)白云花岗片麻岩745±5Zhao Tian et al., 2014BH1631°48′23.2″, 117°34′30.3″肥东杂岩(董岗岩体)花岗片麻岩767±5Zhao Tian et al., 2014BH1031°48′3.3″, 117°33′43.1肥东杂岩(董岗岩体)白云母花岗片麻岩800±3Zhao Tian et al., 2014BH1131°48′40.9″, 117°37′37.4″肥东杂岩(火龙山岩体)二长花岗片麻岩750±6Zhao Tian et al., 2014QT60-4肥东杂岩斜长角闪岩809±7康涛等, 2013FC01肥东杂岩二长片麻岩796±12Liu Lei et al., 2015FC02肥东杂岩斜长角闪岩794±11Liu Lei et al., 2015FC11肥东杂岩花岗片麻岩803±11Liu Lei et al., 2015KJ01肥东杂岩黑云斜长片麻岩812±8Liu Lei et al., 2015HZ10-130°32′04.7″, 116°47′52.4″董岭杂岩变安山岩754±10刘硕等, 2016HZ10-230°32′04.7″, 116°47′52.4″董岭杂岩变安山岩761±12刘硕等, 2016HZ230°30′31.9″, 116°44′55.1″董岭杂岩(岩体)花岗片麻岩829±11刘硕等, 2016HZ330°29′58.0″, 116°45′4.0″董岭杂岩(岩体)花岗片麻岩829±10刘硕等, 2016HZ430°29′23.0″, 116°43′32.0″董岭杂岩(岩体)花岗片麻岩827±8刘硕等, 2016HZ730°32′18.0″, 116°46′29.9″董岭杂岩(岩体)花岗片麻岩822±9刘硕等, 2016HZ830°32′26.0″, 116°46′24.0″董岭杂岩(岩体)花岗片麻岩812±7刘硕等, 2016点号经纬度采样位置与岩组岩石类型最小年龄(Ma)数据来源HZ930°32′51.0″, 116°47′27.8″董岭杂岩(变沉积岩)白云石英片岩786刘硕等, 2016HZ1130°33′12.5″, 116°48′35.9″董岭杂岩(变沉积岩)变质砂岩787刘硕等, 2016H-3030°36′31.7″, 116°47′11.3″董岭杂岩(变沉积岩)二长片麻岩768王继林等, 201609AQ14董岭杂岩(变沉积岩)云母石英片岩765Zhang Shaobing et al., 201509AQ17董岭杂岩(变沉积岩)长石石英片岩774Zhang Shaobing et al., 201509AQ24董岭杂岩(变沉积岩)片麻岩806Zhang Shaobing et al., 201509AQ25董岭杂岩(变沉积岩)片麻岩731Zhang Shaobing et al., 2015

在下扬子西缘地区,洪镇变质核杂岩内出露的董岭杂岩,其中变火山岩的原岩时代为761~754 Ma(刘硕等,2016),也与区内张八岭群火山岩喷发同期,进一步指示这期岩浆活动在下扬子地区的广泛性。董岭杂岩内的变形、变质侵入体的原岩时代为829~812 Ma,峰期为825 Ma,指示了新元古代中期岩浆活动。

下扬子西缘地区新元古代火成岩锆石U-Pb原岩年龄谱(各样品内用于原岩年龄计算的年轻一组年龄值),显示庐江以北地区存在两期岩浆活动,峰期分别为805 Ma和754 Ma(图5a);而庐江以南地区存在三期岩浆活动,峰期分别为826 Ma、801 Ma和751 Ma(图5b)。空间分布对比表明,峰期为826 Ma的岩浆活动仅出现在更靠近江南造山带的庐江以南以区,而另两期较年轻的岩浆活动在庐江以南与以北地区均出现。

下扬子西缘地区新元古代火成岩锆石年龄谱(含继承与捕获锆石年龄),仍然显示区内新元古代岩浆活动主要发生在其中—晚期,三个峰期年龄分别为827 Ma、801 Ma 和750 Ma(图6a),Th/U值显示为岩浆成因锆石(图6b)。对比显示,下扬子地区峰期为827 Ma的岩浆活动相对较弱(且仅存在于南部),而峰期为801 Ma 和750 Ma的岩浆活动相对较强。值得注意的是,下扬子西缘地区新元古代火成岩内继承或捕获的岩浆锆石年龄值,显示发生过860~830 Ma的岩浆活动(图6a)。这些年龄值的岩浆锆石多出现在下扬子西缘地区南部(洪镇变质核杂岩区;刘硕等,2016),显示接近江南造山带加强的现象(图5b)。这些继承或捕获岩浆锆石年龄值,反映下扬子地区>860 Ma的新元古代早期岩浆活动十分微弱或不发育(图6a)。

图5 下扬子西缘地区庐江以北(a)和庐江以南(b)新元古代变火成岩锆石U-Pb原岩年龄频谱图(参考文献见表2) Fig.5 Spectra of zircon U-Pb protolith ages for the Neoproterozoic meta-igneous rocks in the western margin of the Lower Yangtze region north of Lujiang(a)and south of Lujiang(b)(references are listed in Table 2)

图6 下扬子西缘地区与江南造山带新元古代岩浆锆石U-Pb年龄频谱图(a、c)及锆石Th/U值图(b、d) Fig.6 U-Pb age spectra of Neoproterozoic magmatic zircons from the western margin of the Lower Yangtze region and the Jiangnan Orogen (a、c);Th/U radio versus age diagram of Neoproterozoic magmatic zircons from the western margin of the Lower Yangtze region and the Jiangnan Orogen (b、d) 含继承与捕获锆石年龄;下扬子西缘地区数据参考文献见表2;江南造山带数据来源:Li Xianhua,1999,2003,2008;葛文春等,2001;Li Zhengxiang et al.,2003;曾雯等,2005;Wu Rongxin et al.,2006;Wang Xiaolei et al.,2006,2008,2012,2013;2014;张世红等,2008;Li Wuxian et al.,2008;Zheng Yongfei et al.,2008;张春红等,2009;Zhou Jincheng et al.,2009;薛怀民等,2010;高林志等,2010,2011;张菲菲等,2011;Wang Xuance et al.,2012;Zhang Chuanlin et al.,2013;Yao Jinlong et al.,2014a,b;王存智等,2016;Ma Xiaoxiong et al.,2017;Xin Yujia et al.,2017) Including inherited and captured zircons age.Data for the western margin of the Lower Yangtze region are listed in Table 2;Data for the Jiangnan Orogen are from:Li Xianhua,1999,2003,2008;Ge Wenchun et al.,2001&;Li Zhengxiang et al.,2003;Zeng Wen et al.,2005&;Wu Rongxin et al.,2006;Wang Xiaolei et al.,2006,2008,2012,2013;2014;Zhang Shihong et al.,2008&;Li Wuxian et al.,2008;Zheng Yongfei et al.,2008;Zhang Chunhong et al.,2009&;Zhou Jincheng et al.,2009;Xue Huaimin et al.,2010&;Gao Linzhi et al.,2010&,2011&;Zhang Feifei et al.,2011&;Wang Xuance et al.,2012;Zhang Chuanlin et al.,2013;Yao Jinlong et al.,2014a,b;Wang Cunzhi et al.,2016;Ma Xiaoxiong et al.,2017;Xin Yujia et al.,2017

前人工作对下扬子西缘地区洪镇变质核杂岩区下古生界和下震旦统砂岩及董岭杂岩内变沉积岩进行了碎屑锆石U-Pb定年(Zhang Shaobing et al.,2015;刘硕等,2016),也进一步揭示了下扬子地区新元古代岩浆活动历史。这些碎屑锆石定年结果显示,下扬子地区(南部)新元古代最强的岩浆活动峰期为805 Ma,其次为780 Ma和825 Ma(图7a)。可能由于750 Ma发育的裂谷仍没有抬升,这期强烈的岩浆活动(张八岭群)在这些碎屑锆石年龄谱上反映并不突出。碎屑锆石也指示下扬子地区(南部)存在着峰期为840 Ma的较强岩浆活动(图7a),与洪镇变质核杂岩区继承或捕获岩浆锆石年龄值(图6a)相吻合。另外,所获得的碎屑锆石年龄值同样指示下扬子地区>860 Ma的新元古代早期岩浆活动十分微弱或几乎不发育(图7a)。

通过这些语汇,阐述了浙南商业文化产生的原因,进而概括了浙南商业文化的特点,最后总结温州人的商业精神。所有这些都是通过大量的语汇反映、折射出来的。

图7 下扬子西缘地区洪镇变质核杂岩区与其它区扬子板块碎屑锆石年龄谱(a、c)及锆石Th/U值图(b、d) Fig.7 Detrital zircon age spectra for the Hongzhen metamorphic core complex in the Lower Yangtze region and other regions of the Yangtze Plate(a、c)and Zircon Th/U ratio versus age diagram (b、d) 洪镇变质核杂岩区数据来源见表2;扬子克拉通年龄值数据:Zhang Shaobing et al.,2006;Liu Xiaoming et al.,2008;Wang Lijuan et al.,2012;Wang Wei et al.,2012;杜秋定等,2013 Data for theHongzhen metamorphic core complex in the Lower Yangtze region are listed in Table 2;Data for other regions of the Yangtze Plate are from:Zhang Shaobing et al.,2006;Liu Xiaoming et al.,2008;Wang Lijuan et al.,2012;Wang Wei et al.,2012;Du Qiuding et al,2013&

综上所述,下扬子地区存在峰期分别为750 Ma、800 Ma和825 Ma的岩浆活动及其形成火成岩。继承、捕获与碎屑锆石显示,该区还存在峰期为840 Ma的岩浆活动,1000~860 Ma的岩浆活动十分微弱或几乎不发育。在空间上,峰期为825 Ma和840 Ma的岩浆活动仅发育于下扬子区南部。

3.1.2 太古宙—古元古代岩浆活动历史

下扬子地区至今还没有太古宙和中元古代岩石年龄的可靠记录。(Chen Zhihong and Xing Guangfu ,2016)最近报道了董岭杂岩中一个正片麻岩样品的锆石上交点U-Pb年龄为1.85 Ga,认为下扬子地区存着早元古代变质基底与岩浆活动。董岭杂岩内的变沉积岩及其旁侧下震旦统与下古生界砂岩的碎屑锆石年龄谱(图7a),显示存在新太古代—古元古代早期与古元古代中期岩浆活动,峰期分别为2454 Ma和2010 Ma (Zhang Shaobing et al.,2015;刘硕等,2016)。这些碎屑锆石的Th/U值表明(图7b),新太古代—早元古代早期者皆为岩浆锆石,指示为岩浆活动产物;而古元古中期者多为岩浆锆石,但也存在着变质锆石,分别指示为岩浆活动与变质作用产物。

订阅方式:直接向《中国康复》编辑部订购,电话:(027)69378389;E-mail:zgkf1986@163.com

众所周知,2500 Ma左右为全球大陆生长期,伴随有全球规模的岩浆活动(Bekker and Eriksson,2003)。扬子板块上的鄂西崆岭杂岩被证实包含有太古宙的岩石(Zhang Shaobing et al.,2006),其它地区的一系列碎屑与继承锆石也显示扬子板块上存在着太古代的地壳生长事件(Zhao Guochun and Cawood,2012;Zhang Shaobing and Zheng Yongfei,2013)。因而,下扬子地区碎屑锆石所记录的新太古代—古元古代早期岩浆活动就是上述地壳生长事件的反映。

根据导则,本工程年径流总量控制率为75%,对应的设计降雨量为29.2mm。采用简易容积法计算,对应绿化带滞蓄水深度约为18mm。在下沉式绿化带内设置溢流式雨水口,雨水口高出绿化地坪18cm,溢流式雨水口按20~50m间距布置,并与雨水检查井的位置相对应。降雨发生后,地表径流经沉砂池溢流进入下沉式绿化带,经绿地蓄渗饱和后,多余的雨水溢流至雨水口,通过雨水口连接管排至雨水主管。

约2000 Ma时期,通过全球范围内的造山作用,哥伦比亚超大陆形成(Zhao Guochun et al.,2004),相应发生了广泛的岩浆活动与变质作用。扬子板块上这期岩浆活动与变质作用也有一系列记录(Zhao Guochun and Cawood,2012;Zhang Shaobing and Zheng Yongfei,2013)。下扬子地区碎屑锆石所记录的古元古代中期岩浆活动与变质作用,显然是这期岩浆与变质事件记录的补充,并显示在整个扬子板子板块上的普遍存在。

最后,要推进人才培养内容的改革,加快独立学院教育内容与人才培养定位的结合,实现“三位一体”的人才培养目标。加快独立学院人才培养制度改革,围绕“三位一体”人才培养定位,在夯实专业基础知识教育的同时,切实加大实习实践环节的教学,同时,还要增加职业精神培育与道德素质教育的内容。充分体现涵盖专业素养、职业技能、职业精神构成的核心职业能力的“三位一体”的人才培养模式的优势,不仅要加强知识教授的全面性,更要建立和健全综合素质的测评体系,保证毕业生在走出校园、走上岗位的时候,能够胜任岗位要求,成为符合时代要求的强技能、懂专业、能科研、讲追求的技术技能型高层次人才。

3.2 区域对比及大地构造意义

3.2.1 >830 Ma岩浆活动对比与意义

沿扬子板块西缘与西北缘发育的攀西—汉南弧,具有1000~725 Ma的岩浆活动记录(Zhou Meifu et al.,2002,2006a,b;Zhao Junhong et al.,2011;Chen Qiong et al.,2016)。其新元古代早期(1000~860 Ma)岩浆活动应是该岩浆弧的特征,它们很少出现在扬子板块内部(东南缘除外)。近年来的锆石年代学分析表明(Zhu Guang et al.,2017),该岩浆弧向东沿入大别造山带北部的北淮阳单元,以出现1000~900 Ma的显著岩浆活动为特征。

对采集的肥东杂岩内两个定年样品,经破碎后进行了浮选、电磁选等方法分选出单颗粒锆石(河北省廊坊欣航测绘院完成)。然后在双目镜下挑选出晶形比较完好的锆石颗粒,制成环氧树脂样品靶,然后进行抛光处理,使锆石内部形态暴露。随后进行了背散射和锆石阴极发光照相(重庆宇劲科技有限公司完成)。LA-ICP-MS锆石U-Pb定年在合肥工业大学资源与环境工程学院质谱实验室完成。锆石原位U-Pb同位素定年采用激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析,激光剥蚀系统采用波长193nm激光器的GEOLAS,激光脉冲频率6 Hz,能量密度10 J/cm2,剥蚀斑束直径32 μm,测试质谱仪为Agilent 7500a。以91500为外标,91Zr为内标进行同位素分馏校正,以锆石标样Plesovice作为同位素监控样,来获得可靠的年龄值。微量元素含量采用国际标样NIST SRM 610作为外标,29Si作为内标元素进行校正。本次实验测定的锆石标样结果与误差和推荐值一致。锆石测定点的同位素比值、U-Pb表面年龄以及元素含量的计算(表1)采用ICPMSDataCal 9.6程序(Liu Yongsheng et al.,2010)完成,并且使用Andersen (2002)方法进行普通铅校正。然后,使用Isoplot 4.1(Ludwig,2010)进行锆石加权平均年龄的计算以及谐和图的绘制。本次采用锆石的206Pb/238U年龄,只对谐和度>90%的年龄值进行分析。

在扬子与华夏板块发生陆—陆碰撞之前,大洋俯冲使得扬子板块东南缘成为岩浆弧环境,发育有1000~830 Ma的火成岩(图6c、7c;Wang Xiaolei et al.,2004,2006;Li Xianhua et al.,2009;Zhao Junhong et al.,2011;舒良树.2012;Zhao Guochun,2015),Th/U值显示为岩浆锆石成因(图6d、7d)。下扬子地区1000~860 Ma的岩浆活动十分微弱或几乎不发育,而南部(西缘庐江以南)出现了峰期为840 Ma的岩浆活动。这一峰期为840 Ma岩浆活动应属于扬子板块东南缘碰撞之前弧岩浆活动产物。其空间分布特征(北部缺失)也支持这一认识。这显示扬子板块东南缘的岩浆弧向北可以延伸至洪镇变质核杂岩区(图1a),但是1000~860 Ma的弧岩浆活动却没有影响至此区。

她摇摇头,用典型的赵玉墨嗓音说:“你认错人了。”三十年代南京的浪子们都认识赵玉墨,都爱听她有点跑调的歌声。

出露于张八岭隆起南段的肥东杂岩,由于出露层次深,我们看到肥东杂岩变质温度达到600℃,是一套角闪岩相变质杂岩(Zhang Qing et al.,2007;石永红等,2009;康涛等,2013),并且受到郯庐断裂的影响,普遍发生韧性变形,糜棱岩发育,表现为北东向左行走滑构造(Zhu Guang et al.,2005;Zhao Tian et al.,2014)。该杂岩岩性包括角闪岩、斜长角闪岩、磁铁石英岩、黑云斜长片麻岩、黑云斜长片麻岩、花岗质片麻岩、云母片岩、大理岩(含磷)等,可划分为正变质岩与副变质岩两类。其中可识别出一些变质花岗岩体,如较大型号的董岗岩体(Zhao Tian et al.,2014)。近年来,获得了肥东杂岩内花岗质片麻岩(正变质岩)锆石U-Pb年龄为812~745 Ma(康涛等,2013;Zhao Tian et al.,2014;Liu Lei et al.,2015),指示其原岩为新元古代中—晚期火成岩。

基于双轨迹构图可知本题有两解,解法1漏解.构造△ADB的外接圆圆心E,点E可在AB下方如图4;也可在AB上方,如图5;因此有必要思考圆心E还可在AB边上,如图6.

下扬子地区显然也存在峰期为825 Ma的岩浆活动(图6a,7a),但是仅出现在靠近江南造山带的南部(图5b)。这种空间变化特点,指示与江南造山带存在着密切关系,支持这期岩浆活动仅仅是后造山伸展的结果。

3.2.3 南华裂谷范围与意义

扬子与华夏板块的碰撞造山时间,多数学者所认为发生在约830 Ma(Zhao Junhong et al.,2011;Zhao Guochun and Cawood,2012;Zhang Shaobing and Zheng Yongfei,2013)。随后,沿着江南造山带发生了大规模的伸展活动(Li Zhengxiang et al.,1995,1999,2002,2003,2007 ;Li Xianhua et al.,2003,2008;Wang Xiaolei et al.,2004,2006;Zhao Junhong et al.,2011;Zhao Guochun,2015),开始发育南华裂谷,并出现峰期为825 Ma的强烈岩浆活动(图6c)。这期岩浆活动集中在830 Ma~820 Ma期间,也有学者认为峰期是820 Ma (Li Zhengxiang et al.,2003;Zhang Shaobing and Zheng Yongfei,2013)。对于这期华南新元古代最强的岩浆活动(图6c、7c),仅仅是后造山伸展结果,还是代表了罗迪尼亚(Rodinia)超大陆裂解的开始,仍然存在着不同的认识(Zhao Guochun and Cawood,2012)。

文化是一种行为规范,社会成员以此作为准则进行社会行动,从而成为人类历史发展中的精神财富。而体育文化则是文化系统中的一个子系统,国内外对体育文化的定义也有不同的看法。例如,许多学者认为体育文化是一种包括体育行为、制度、精神以及物质的特殊的文化形式。体育文化是人们在进行体育运动时,为保证体育运动有效开展而产生的一种规则。还有学者认为体育文化是一种深层次的精神文化,能够对人们的审美情趣、道德思想以及价值观念产生影响。因此,对体育文化的定义尚未明确,但能够清楚知道体育文化的发展对民族文化发展具有重要意义,能够促进文化强国的构建,并有效提升国家竞争力。

在区域伸展背景下发育的南华裂谷(图1b),活动时限为830~700 Ma (Li Zhengxiang et al.,1995,1999,2002,2003,2007 ;Li Xianhua et al.,2003,2008;Wang Xiaolei et al.,2004,2006;Zhao Junhong et al.,2011;Zhang Shaobing and Zheng Yongfei,2013;Zhao Guochun,2015)。该裂谷经历过三阶段发育,伴随着三期岩浆活动,岩浆活动峰期分别为825 Ma、800 Ma和750 Ma(图6c;Li Zhengxiang et al.,1995,1999,2002,2003,2007 ;Li Xianhua,1999;Wang Xiaolei et al.,2004,2006;Zhao Guochun,2015),Th/U值显示为岩浆锆石成因。如前文所述,峰期为825 Ma的活动是后造山伸展的结果。

下扬子地区也存在着峰期为800 Ma和750 Ma的岩浆活动(图5a、b、6a、7a)及伴随的裂谷沉积(Zhao Tian et al.,2014;Zhang Shaobing and Zheng Yongfei,2013)。这两期活动在下扬子地区的南部与北部同时发生,随着远离江南造山带也没有出现减弱的现象。各种现象显示,下扬子地区在新元古代最强的伸展活动发生在750 Ma前后(图5a、b、6a),导致了最强的岩浆活动和最厚与最广泛的裂谷沉积。这些空间分布特征表明,峰期为800 Ma的岩浆活动与裂谷发育,在远离江南造山带的下扬子地区也广泛发育。综合各种现象表明,南华裂谷发育的第一个阶段(峰期为825 Ma)代表着江南造山带的后造山伸展。在空间上,第一阶段的南华裂谷也主要是沿着江南造山带分布。进入峰期为800 Ma的第二个阶段,南华北裂谷向东部北扩展至整个下扬子地区,应该标志着罗迪尼亚(Rodinia)超大陆裂解影响的全面开始。峰期为750 Ma第三个阶段,是超大陆裂解在扬子板块上表现的最强时期。因而,南华裂谷起始于江南造山带的后造山带伸展,随后的两个演化阶段是罗迪尼亚(Rodinia)超大陆裂解影响的结果,从而向外扩展。

2.3.2 病虫害防治目标不明确 主要反映在秦安椒农用药针对性不明确和防治时期掌握不准上。部分椒农把虫与病、杀虫剂与杀菌剂分不开,经常单一使用一种或两种农药长年防治多种病虫,不限时、不限量使用,超量使用化学农药,不但使害虫的抗药性增强,防治效果欠佳,还使椒皮有害成分残留量大,内在品质下降,严重影响了花椒的产量和质量。

4 结论

通过本次对下扬子西缘地区新元古代肥东杂岩的锆石U-Pb年代学分析,再结合前人获得的相关年代学信息,可以得出主要结论如下:

(1)肥东杂岩锆石定年结果表明,其中的变质变形岩体侵位时代为804~805 Ma,结合前人研究成果,表明肥东杂岩内变火成岩原岩时限为812~745 Ma,可分为812~794 Ma和767~745 Ma两期,相应的峰期分别为800 Ma和750 Ma。

(2)下扬子西缘地区张八岭群由变火山岩与变沉积岩构成,代表了裂谷环境下发育的火山—沉积系列。其中变火山岩的原时时限为767~748 Ma。董岭杂岩包括变火山岩、变侵入岩与变形沉积岩。其中变火山岩的原岩时代为761~754 Ma,而变侵入岩的原岩时代为829~812 Ma(峰值为825 Ma)。但是,这一峰值为825 Ma的岩浆活动在北部地区(庐江以北)缺失。

在法庭口译中,文化差异所导致的交流障碍是客观存在的,也是口译员在口译过程中需要解决的。引起交流障碍的常见文化问题有肢体语言、礼仪习俗、具有文化特性的法律词汇以及具有文化特性的语用词义。

(3)下扬子地区继承、捕获与碎屑锆石年代学信息,还指示区内发生过峰期分别为840 Ma、2010 Ma和2454 Ma的岩浆活动,但是基本缺失1000 Ma~860 Ma的岩浆活动。

(4)通过区域对比表明,攀西—汉南弧没有延入下扬子地区。下扬子南部受到了峰期为840 Ma的弧岩浆活动影响。扬子板块上峰期为825 Ma的岩浆活动及早阶段的南华裂谷应是后造山伸展的产物。峰期分别为800 Ma和750 Ma的岩浆活动与相应的南华裂谷扩展,代表了Rodinia超大陆裂解的全面影响。

参考文献/ References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract;The literature whose publishing year followed by a “#” is in Chinese without English abstract)

杜秋定,汪正江,王剑,卓皆文,谢尚克,邓奇,杨菲.2013.湘中长安组碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义.地质论评,59(2):334~344.

高林志,戴传固,刘燕学,王敏,王雪华,陈建书,丁孝忠,张传恒,曹茜,刘建辉.2010.黔东南—桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义.地质通报,29(9):1259~1267.

高林志,陈峻,丁孝忠,刘耀荣,张传恒,张恒,刘燕学,庞维华,张玉海.2011.湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄.地质通报,30(7):1001~1008.

葛文春,李献华,李正祥,周汉文.2001.龙胜地区镁铁质侵入体:年龄及其地质意义.地质科学,36(1):112~118.

姜慧超,王绪诚,周祖翼,阙晓铭.2012.苏鲁造山带岩浆岩的锆石U-Pb定年及构造意义.同济大学学报(自然科学版),40(2):297~303.

康涛,刘晓燕,王娟,聂峰,石永红.2013.郯庐断裂东侧肥东地块变质属性及年代学研究.岩石学报,29(9):3142~3158.

刘硕,朱光,吴齐,陈印,张帅,王薇.2016.安徽怀宁县洪镇变质核杂岩原岩时代与形成机制再认识.地质论评,62(3):585~603.

石永红,朱光,王道轩.2009.郯庐断裂带张八岭隆起南段肥东群石榴角闪岩变质P—T演化史对其构造属性的制约.岩石学报,25(12):3335~3345.

舒良树.2012.华南构造演化的基本特征.地质通报,31(7):1035~1053.

王存智,余明刚,黄志忠,洪文涛,赵希林,姜杨,周效华,段政,邢光福.2016.赣东北蛇绿岩带新元古代(~800 Ma)高镁安山岩的发现及其意义.地质论评,62(5):1185~1200.

王继林,何斌.2016.安徽洪镇地区董岭群碎屑锆石U-Pb年代学及其地质意义.大地构造与成矿学.40(6):1239~1246.

汪正江,王剑,江新胜,孙海清,高天山,陈建书,邱艳生,杜秋定,邓奇,杨菲.2015.华南扬子地区新元古代地层划分对比研究新进展.地质论评,61(1):1~22.

薛怀民,马芳,宋永勤,谢亚平.2010.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束.岩石学报,26(11):3215~3244.

薛怀民,董树文,马芳.2012a.长江中下游庐枞盆地火山岩的SHRIMP锆石U-Pb年龄:对扬子克拉通东部晚中生代岩石圈减薄机制的约束.地质学报,86(10):1569~1583.

薛怀民,马芳,宋永勤.2012b.江南造山带西南段梵净山地区镁铁质—超镁铁质岩:形成时代、地球化学特征与构造环境.岩石学报,28(9):3015~3030.

薛怀民,马芳,关海燕,王一鹏.2013.怀宁盆地火山岩的年代学、地球化学及与长江中下游其他火山岩盆地的对比.中国地质,40(3):694~714.

曾雯,周汉文,钟增球,曾昭光,李惠民.2005.黔东南新元古代岩浆岩单颗粒锆石U-Pb年龄及其构造意义.地球化学,34(6):548~556.

张春红,范蔚茗,王岳军,彭头平.2009.湘西隘口新元古代基性—超基性岩墙年代学和地球化学特征:岩石成因及其构造意义.大地构造与成矿学,33(2):283~293.

张菲菲,王岳军,范蔚茗,张爱梅,张玉芝.2011.江南隆起带中段新元古代花岗岩锆石U-Pb年代学和Hf同位素组成研究.大地构造与成矿学,35:73~84.

张世红,蒋干清,董进,韩以贵,吴怀春.2008.华南板溪群五强溪组SHRIMP锆石U-Pb年代学新结果及其构造地层学意义.中国科学,38(12):1496~1503.

赵田,朱光,林少泽,宋利宏.2014.郯庐断裂带南段张八岭群变质岩的原岩时代及其构造意义.地质论评,60(6):1265~1283.

Andersen T.2002.Correction of common lead in U-Pb analyses that do not report204Pb.Chemical Geology,192(1~2):59~79.

Bekker A and Eriksson K A.2003.A Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton:a record of the kenorland breakup.Precambrian Research,120(3):327~364.

ChenQiong,Sun Min Long Xiaoping Zhao Guochun Yuan Chao.2016.U-Pb ages and Hf isotopic record of zircons from the late Neoproterozoic and Silurian—Devonian sedimentary rocks of the western Yangtze Block:Implications for its tectonic evolution and continental affinity.Gondwana Research.31:184~199.

Chen Zhihong and Xing Guangfu.2016.Geochemical and zircon U—Pb—Hf—O isotopic evidence for a coherent Paleoproterozoic basement beneath the Yangtze Block,South China.Precambrian Research,279:81~90.

Du Qiuding,Wang Zhengjiang,Wang Jian,Zhuo Jiewen,Xie Shangke,Deng Qi,Yang Fei.2013&.LA-ICP-MS U-Pb Ages of Detrital Zircons from the Neoproterozoic Chang’an Formation in Central Hunan and Its Geological Implicatons.Geological Review,59(2):334~344.

Gao Linzhi,Dai Chuangu,Liu Yanxue,Wang Min,Wang Xuehua,Chen Jianshu,Ding Xiaozhong,Zhang Chuanheng,Cao Qian,Liu Jianhui.2010&.Zircon SHRIMP U-Pb dating of tuff bed of the Sibao Group in southeastern Guizhou—northern Guangxi area,China and its stratigraphic implication.Geological Bulletin of China,29(9):1259~1267.

Gao Linzhi,Chen Jun,Ding Xiaozhong,Liu Yaorong,Zhang Chuanheng,Zhang Heng,Liu Yanxue,Pang Weihua,Zhang Yuhai.2011&.Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi groups,northeastern Hunan:constraints on the Wuling Movement.Geological Bulletin of China,30(7):1001~1008.

Ge Wenchun,Li Xianhua,Li Zhengxiang,Zhou Hanwen.2001&.Mafic intrusions in Longsheng area:age and its geological implications.Chinese Jouanal of Geology,36(1):112~118.

Grimmer J C,Ratschbacher L,McWilliams M,Franz L,Gaitzsch I,Tichomirowa M.Hacker B R,Zhang Yueqiao.2003.When did the ultrahigh-pressure rocks reach the surface? A 207Pb/206Pb zircon,40Ar/39Ar white mica,Si-in-white mica,single-grain provenance study of Dabie Shan synorogenic foreland sediments.Chemical Geology,197(1~4):87~110.

Jiang Huichao,Wang Xucheng,Zhou Zuyi,Que Xiaoming.2012&.Zircon U-Pb Dating and Tectonics Relevance for Igneous Rocks in Sulu Orogen.Journal of Tongji University(Natural Science),40(2):297~303.

Kang Tao,Liu Xiaoyan,Wang Juan,Nie Feng,Shi Yonghong.2013&.Analysis of metamorphic attribution and geochronology for the Feidong terrane in the east of the Tan-Lu Fault.Acta Petrologica Sinica,29(9):3142~3158.

Li Shuguang,Jagoutz E,Lo Ching Hua,Chen Yizhi,Li Qiuli,Xiao Yilin.1999.Sm/Nd,Rb/Sr,and 40Ar/39Ar Isotopic Systematics of the Ultrahigh-Pressure Metamorphic Rocks in the Dabie—Sulu Belt,Central China:A Retrospective View.International Geology Review,41(12):1114~1124.

Li Wuxian,Li Xianhua,Li Zhengxiang,Lou Fasheng.2008.Obductuion-type granites within the NE Jiangxi Ophiolite:implications for the final amalgamation between the Yangtze and Cathaysia blocks.Gondwana Research,13(3):288~301.

Li Xianhua.1999.U-Pb zircon ages of granites from the southern margin of the Yangtze Block:timing of Neoproterozoic Jinning:Orogeny in SE China and implications for Rodinia Assembly.Precambrian Research,97(1):43~57.

Li Xianhua,Li Zhengxiang,Ge Wenchun,Zhou Hanwen,Li Wuxian,LiuYing,Wingate M T D.2003.Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca.825 Ma? Precambrian Research,122(1):45~83.

Li Xianhua,Li Wuxian,Li Zhengxiang,Liu Ying.2008.850~790Ma bimodal volcanic and intrusive rocks in northern Zhejiang,South China:a major episode of continental rift magmatism during the breakup of Rodinia.Lithos,102(1~2):341~357.

Li Xianhua,Li Wuxian,Li Zhengxiang,Lo Chinghua,Wang Jian,Ye Meifang,Yang Yueheng.2009.Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb zircon ages,geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks.Precambrian Research,174(1):117~128.

Li Zhengxiang,Zhang Linghua,Powell C M.1995.South China in Rodinia:Part of the missing link between Australia East Antarctica and Laurentia? Geology,23(5):407.

Li Zhengxiang,Li Xianhua,Kinny P D,Wang Jian.1999.The breakup of Rodinia:did it start with a mantle plume beneath South China? Earth and Planetary Science Letters,173(3):171~181.

Li Zhengxiang,Li Xianhua,Zhou Hanwen,Kinny P D.2002.Grenville-aged continental collision in South China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia.Geology,30(2):163~166.

Li Zhengxiang,Li Xianhua,Kinny P D,Wang Jian,Zhang Shilong,Zhou Hanwen.2003.Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton,South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia.Precambrian Research,122(1),85~109.

Li Zhengxiang,Wartho J A,Occhipinti S,Zhang Chuanlin,Li Xianhua,Wang Jian,Bao Chao.2007.Early history of the eastern Sibao orogen (South China)during the assembly of Rodinia:new 40Ar/39Ar dating and U-Pb SHRIMP detrital zircon provenance constraints.Precambrian Research,159(1):74~94.

Li Zhengxiang,Bogdanova S V,Collin A S,Davidson A,Waele B D,Ernst R E,Fitzsimons I C W,Fuck R A,Gladkochub D P,Jacobs J J,Karlstrom K E,Lu S,Natapov L M,Pease V,Pisarevsky S A,Thrane K,Vernikovsky V.2008.Assembly,configuration,and break-up history of Rodinia:A synthesis.Precambrian Research,160(1~2):179~210.

Liu Lei,Yang Xiaoyong,Santosh M,Aulbach S,Zhou Hongying,Geng Jianzhen,Sun Weidong.2015.Neoproterozoic intraplate crustal accretion on the northern margin of the yangtze block:evidence from geochemistry,zircon SHRIMP U-Pb dating and Hf isotopes from the Fuchashan Complex.Precambrian Research,268:97~114.

Liu Shuo,Zhu Guang,Wu Qi,Chen Yin,Zhang Shuai,Wang Wei.2016&.Reappraisal of protolith ages and formation mechanism for the Hongzhen metamorphic core complex.Geological Review,62(3):585~603.

Liu Xiaoming,Gao Shan,Diwu Chunrong,Ling Wenli.2008.Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies.American Journal of Science,308(4):421~468.

Liu Yongsheng,Gao Shan,Hu Zhaochu,Gao Changgui,Zong Keqing,Wang Dongbing.2010.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths.Journal of Petrology,51(51):537~57.

Ludwig K R.2010.ISOPLOT 4.1:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center:Special Publication,4:1~77.

Ma Xiaoxiong,Dong Chuanwan,Zhou Chao,Lv Qing,Gu Hongyan,Wu Weiwei.2017.The Neoproterozoic continental rift magmatism of the eastern Jiangnan orogen:new evidence from the mafic sheets in northern Zhejiang province,south china.International Geology Review,59(7):829~844.

Shi Yonghong,ZhuGuang,Wang Daoxuan.2009&.Metamorphic P—T evolution for the garnet amphibolite from Feidong in the south of Zhangbaling uplift across Tan-Lu fault and its influence on tectonics.Acta Petrologica Sinica,25(12):3335~3345.

Shu Liangshu.2012&.An analysis of principal features of tectonics evolution in South China Block.Geological Bulletin of China,31(7):1035~1053.

Wang Cunzhi,Yu Minggang,Huang Zhizhong,Hong Wentao,Zhao Xilin,Jiang Yang,Zhou Xiaohua,Duan Zheng,Xing Guangfu.2016&.Recognition and Significance of Neoproterozoic (ca.800 Ma)High-Mg Andesites in the NE Jiangxi Ophiolite Belt.Geological Review,62(5):1185~1200.

Wang Jian and Li Zhengxiang.2003.History of Neoproterozoic rift basins in South China:implications for Rodinia break-up.Precambrian Research,122(1~4):141~158.

Wang Jilin,He Bin.2016&.LA-ICP-MS U-Pb Dating of Detrital Zircons from Dongling Group in Hongzhen Area and its Geological Implications.Geotectonica et Metallogenia,40(6):1239~1246.

Wang Lijuan,Yu Jinhai,Griffin W L,O’Reilly S Y.2012.Early crustal evolution in the western yangtze block:evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks.Precambrian Research,222~223:368~385.

Wang Wei,Chen Fukun,Hu Rong,Chu Yang,Yang Yizeng.2012.Provenance and tectonic setting of Neoproterozoic sedimentary sequences in the south china block:evidence from detrital zircon ages and Hf—Nd isotopes.International Journal of Earth Sciences,101(7):1723~1744.

Wang Xiaolei,Zhou Jincheng,Qiu Jiansheng,Gao Jianfeng.2004.Geochemistry of the Meso- to Neoproterozoic basic—acid rocks from Hunan Province,South China:implications for the evolution of the western Jiangnan orogen.Precambrian Research,135(1):79~103.

Wang Xiaolei,Zhou Jincheng,Qiu Jiansheng,Zhang Wenlan,Liu Xiaoming,Zhang Guilin.2006.LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi,South China:implications for tectonic evolution.Precambrian Research,145(1~2):111~130.

Wang Xiaolei,Zhou Jincheng,Qiu Jiansheng,Jiang Shaoyong,Shi Yuruo.2008.Geochronology and geochemistry of Neoproterozoic mafic rocks from western Hunan,South China:Implications for petrogenesis and post-orogenic extension.Geological Magazine,145(2):215~233.

Wang Xiaolei,Shu Liangshu,Xing Guangfu,Zhou Jincheng,Tang Ming,Shu Xujie,Qi Ling,Hu Yanhua.2012.Post-orogenic extension in the eastern part of the Jiangnan orogen:evidence from ca 800~760Ma volcanic rocks.Precambrian Research,222:404~423.

Wang Xiaolei,Zhou Jincheng,Wan Yusheng,Kitajima K,Wang Di,Bonamici C,Qiu Jiansheng,Sun Tao.2013.Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern china:Hf and O isotopes in zircon.Earth and Planetary Science Letters,366(2):71~82.

Wang Xiaolei,Zhou Jincheng,Griffin W L,Zhao Guochun,Yu Jinhai,Qiu Jianshneg,Zhang Yanjie,Xing Guangfu.2014.Geochemical zonation across a Neoproterozoic orogenic belt:Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen,China.Precambrian Research,242(2):154~171.

Wang Xuance,Li Xianhua,Li Zhengxiang,Li Qiuli,Tang Guoqiang,Gao Yuya,Zhang Qirui,Liu Yu.2012.Episodic Precambrian crust growth:evidence from U-Pb ages and Hf—O isotopes of zircon in the Nanhua basin,central south china.Precambrian Research,222~223:386~403.

Wang Zhengjiang,Wang Jian,Jiang Xinsheng,Sun Haiqiang,Gao Tianshan,Chen Jianshu,Qiu Yansheng,Du Qiuding,Deng Qi,Yang Fei.2015&.New Progress for the Stratigraphic Division and Correlation of Neoproterozoic in Yangtze Block,South China.Geological Review,61(1):1~22.

Wu Rongxin,Zheng Yongfei,Wu Yuanbao,Zhao Zifu,Zhang Shaobing,Liu Xiaoming,Wu Fuyuan.2006.Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China.Precambrian Research,146(3~4):179~212.

Xin Yujia,Li Jianhua,Dong Shuwen,Zhang Yueqiao,Wang Wenbao,Sun Hanshen.2017.Neoproterozoic Post-collisional extension of the central Jiangnan orogen:geochemical,geochronological,and Lu-Hf isotopic constraints from the ca.820~800 Ma magmatic rocks.Precambrian Research,294:91~110.

Xing Fengming,Xu Xiang,Li Zhichang.1994.Discovery of the Early Proterozoic Basement in the Middle—Lower Reaches of Yangtze River and Its Significance.Chinese Science Bulletin,39(2):135~139.

Xue Huaimin,Ma Fang,Song Yongqin,Xie Yaping.2010&.Geochronology and geochemistry of the Neoproterozoic granitoid association from eastern segment of the Jiangnan Orogen,China:Constrain on the timing and process of amalgamation between the Yangtze and Cathysia blocks.Acta Petrologica Sinica,26(11):3215~3244.

Xue Huaimin,Dong Shuwen,Ma Fang.2012a&.Zircon SHRIMP U-Pb Ages of Volcanic Rocks in the Luzong Basin,Middle and Lower Yangtze River Reaches:Constraints on the Model of Late Mesozoic Lithospheric Thinning of the Eastern Yangtze Craton.Acta Geological Sinica,86(10):1569~1583.

Xue Huaimin,Ma Fang,Song Yongqin.2012b&.Mafic—ultramafic rocks from the Fanjingshan region,southwestern margin of the Jiangnan orogen belt:Ages,geochemocal characterastics and tectonics setting.Acta Petrologica Sinica,28(9)3015~3030.

Xue Huaimin,MaFang,Guan Haiyan,Wang Yipeng.2013&.Geochronology and geochemistry of volcanic rocks in Huaining basin in comparison with other basins in the middle—lower Yangtze region.Geology In China,40(3):694~714.

Yao Jinlong,Shu Liangshu,Santosh M,Zhao Guochun.2014a.Neoproterozoic arc-related mafic—ultramafic rocks and syn-collision granite from the western segment of the Jiangnan Orogen,South China:Constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia Blocks.Precambrian Research,243(4):39~62.

Yao Jinlong,Shu Liangshu,Santosh M.2014b.Neoproterozoic arc—trench system and breakup of the south china craton:constraints from N-MORB type and arc-related mafic rocks,and anorogenic granite in the Jiangnan orogenic belt.Precambrian Research,247(247):187~207.

Yin An and Nie Shangyou.1993.An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems,eastern Asia.Tetonics,12(4):801~813.

Zeng Wen,Zhou Hanwen,Zhong Zengqiu,Zeng Zhaoguang,Li Huimin.2005&.Single zircon U-Pb ages and their tectonic implications of Neoproterozoic magmatic rocks in southeastern Guizhou,China.Geochimica,34(6):548~556.

Zhang Chuanlin,Santosh M,Zou Haibo,Li Huaikun,Huang Wencheng.2013.The Fuchuan ophiolite in Jiangnan Orogen:geochemistry,zircon U-Pb geochronology,Hf isotope and implications for the Neoproterozoic assembly of south china.Lithos,179(10),263~274.

Zhang Chunhong,Fan Weiming,Wang Yuejun,Peng Touping.2009&.Geochronology and Geochemistry of the Neoproterozoic Mafic—Ultramafic Dykes in the Aikou Area,Western Hunan Province:Petrogenesis and Its Tectonic Implications.Geotectonica et Metallogenia,33(2):283~293.

Zhang Feifei,Wang Yuejun,Fan Weiming,Zhang Aimei,Zhang Yuzhi.2011&.Zircon U-Pb Geochronology and Hf Isotopes of the Neoproterozoic Granites in the Central of Jiangnan Uplift.Geotectonica et Metallogenia,35(1):73~84.

Zhang Qing,Teyssier C,Dunlap J,ZhuGuang.2007.Oblique collision between North and South China recorded in Zhangbaling and Fucha Shan (Dabie—Sulu transfer zone).Cheminform,36(22):263~266.

Zhang Shaobing,Zheng Yongfei,Wu Yuanbao,Zhao Zifu,Gao Shan,Wu Fuyuan.2006.Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China.Earth and Planetary Science Letters,252(1~2):56~71.

Zhang Shaobing and Zheng Yongfei.2013.Formation and evolution of Precambrian continental lithosphere in South China.Gondwana Research,23(4):1241~1260.

Zhang Shaobing,He Qiang,Zheng Yongfei.2015.Geochronological and geochemical evidence for the nature of the Dongling Complex in South China.Precambrian Research,256:17~30.

Zhang Shihong,Jiang Ganqing,Dong Jin,Han Yigui,Wu Huaichun.2008#.New SHRIMP U-Pb age from the Wuqiangxi Formation of Banxi Group:Implications for rifting and stratigraphic erosion associated with the early Cryogenian (Sturtian)glaciation in South China.Science in China,38(12):1496~1503.

Zhao Guochun Sun Min,Wilde S A,Li Sanzhong.2004.A Paleo—Mesoproterozoic supercontinent:assembly,growth and breakup.Earth Sci.Rev.67(1~2),91~123.

Zhao Guochun and Cawood P A.2012.Precambrian geology of China.Precambrian Research,222~223:13~54.

Zhao Guochun.2015.Jiangnan orogen in South China:developing from divergent double subduction.Gondwana Research,27(3):1173~1180.

Zhao Junhong,Zhou Meifu,Yan Danping,Zheng Jianping,Li Jianwei.2011.Reappraisal of the ages of Neoproterozoic strata in South China:no connection with the Grenvillian orogeny.Geology,39(4):299~302.

Zhao Tian,Zhu Guang,Lin Shaoze,Song Lihong.2014&.Protolith Ages of Metamorphic Rocks of the Zhangbaling Group along the Southern Segment of the Tan-Lu Fault Zone and Their Tectonic Implications.Geological Review,60(6):1265~1283.

Zhao Tian,Zhu Guang,Lin Shaoze,Yan Lejia,Jiang Qinqin.2014.Protolith ages and deformation mechanism of metamorphic rocks in the zhangbaling uplift segment of the Tan-Lu fault zone.Science China:Earth Sciences,57(11):2740~2757.

Zhao Tian,Zhu Guang,Lin Shaoze,Wang Haoqian.2016.Indentation-induced tearing of a subducting continent:evidence from the Tan-Lu fault zone,east china.Earth Science Reviews,152:14~36.

Zheng Yongfei,Wu Rongxin,Wu Yuanbao,Zhang Shaobing,Yuan Honglin,Wu Fuyuan.2008.Rift melting of juvenile arc-derived crust:geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen,South China.Precambrian Research,163(3):351~383.

Zhou Meifu,Yan Danping,Kennedy A K,Li Yunqian,Ding Jun.2002.SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block,South China.Earth and Planetary Science Letters,196(1):51~67.

Zhou Meifu,Ma Yuxiao,Yan Danping,Xia Xiaoping,Zhao Junhong,Sun Min.2006a.The Yanbian Terrane (Southern Sichuan Province,SW China):A Neoproterozoic arc assemblage in the western margin of the Yangtze Bloc.Precambrian Research,144(1~2):19~38.

Zhou Meifu,Yan Danping,Wang Changling,Qi Liang,Kennedy A.2006b.Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province,China):Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China.Earth and Planetary Science Letters,248(1):286~300.

Zhou Zhenju,Mao Shidong,Chen Yanjing,Santosh M.2016.U-Pb ages and Lu-Hf isotopes of detrital zircons from the southern Qinling Orogen:Implications for Precambrian to Phanerozoic tectonics in central China.Gondwana Research,35(4):323~337.

Zhou Jianbo,Wilde S A,Liu Fulai,Han Jie.2012.Zircon U-Pb and Lu-Hf isotope study of the Neoproterozoic Haizhou Group in the Sulu Orogen:Provenance and tectonic implications.Lithos,136~139(6):261~281.

Zhou Jincheng,Wang Xiaolei,Qiu Jiansheng.2009.Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou,South China:Coeval arc magmatism and sedimentation.Precambrian Research,170(1):27~42.

Zhu Guang,Wang Yongsheng,Liu Guosheng,Niu Manlan,Xie Chenglong,Li Changcheng.2005.40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone,East China.Journal of Structural Geology,27(8):1379~1398.

Zhu Guang,Liu Guosheng,Niu Manlan,Xie Chenglong,Wang Yongsheng,Xiang Biwei.2009.Syn-collisional transform faulting of the Tan-Lu fault zone,East China.International Journal of Earth Sciences,98(1):135~155.

Zhu Guang,Niu Manlan,Xie Chenglong,Wang Yongsheng.2010a.Sinistral to normal faulting along the Tan-Lu Fault Zone:evidence for geodynamic switching of the East China continental margin.Journal of Geology,118(3):277~293.

Zhu Guang,Xie Chenglong,Chen Wen,Hu Zhaochu.2010b.Evolution of the Hongzhen metamorphic core complex:Evidence for Early Cretaceous extension in the eastern Yangtze Craton,eastern China.Geological Society of America Bulletin,122(3):506~516.

Zhu Guang,Jiang Dazhi,Zhang Bilong,Chen Yin.2012.Destruction of the eastern North China Craton in a backarc setting:evidence from crustal deformation kinematics.Gondwana Research,22(1):86~103.

Zhu Guang,Wang Yongsheng,Wang Wei,Zhang Shuai,Liu Cheng,Gu Chengchuan,Li Yunjian.2017.An accreted micro-continent in the north of the Dabie Orogen,east china:evidence from detrital zircon dating.Tectonophysics,698:47~64.

李云剑,朱光,顾承串,张帅,刘程,牛漫兰,苏楠,肖世椰
《地质论评》 2018年第03期
《地质论评》2018年第03期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号