更全的杂志信息网

川北地区寒武系筇竹寺组钙质结核裂缝充填物特征及指示意义

更新时间:2016-07-05

结核广泛分布于前寒武纪到整个显生宙各种环境沉积岩中,尤以发育于细粒沉积物内部的钙质结核多具有典型成岩特征,可提供大量孔隙水间地球化学演化及早成岩期矿物组分胶结物的信息(Irwin et al.,1977;Hudson et al.,2001;Raiswell,2002;McBride et al.,2003,Mozley and Davis,2005;Dale et al.,2014)。钙质结核常形成于数十米至上百米深度(Mozley and Burns,1993;Mozley,1996;Dong Jin et al.,2013),呈球状、椭圆及连续或不连续条带状,常被裂缝贯穿。裂缝常呈垂直结核、同心圆、径向或横切形态,裂缝完全或部分被碳酸盐和次生矿物所充填。鉴于其成因的特殊性,钙质结核裂缝充填物被视为理解成岩演化的关键特征。前人针对钙质结核的岩石结构特征(Selles-Martinez,1996;Yemane and Kelts,1996;Seilacher,2001)、地化特征(Curtis et al.,1986;Wilkinson,1993;Woo and Khim,2006;Wanas,2008;Mahboubi et al.,2010)等对结核成因(雷加锦等,2000;Dong Jin et al.,2013;张先进等,2013;庞谦等,2017)、成核及生长机制(Raiswell,1971;Luciano Alessandretti,2015)等开展过较为详细的分析。尤其是四川盆地古生代细粒沉积物中钙质结核发育,鉴于其岩性特殊性及受后期构造影响复杂性,前人多重点集中于构造运动(孙衍鹏等,2013;罗良等,2015;冯伟明等,2017;唐永等,2018)及页岩气富集等相关沉积环境(李延钧等,2013;胡宗全等,2016;沈骋等,2016;魏祥峰等,2017)研究。但针对钙质结核裂缝充填物研究相对较少,对充填物形成时间及机制的理解尚不清楚。

本次研究以上扬子北部地区(米仓山前)寒武系筇竹寺组钙质结核裂缝充填物为主要研究对象,通过岩石学、地球化学及结合区域埋藏史—构造演化史等开展系统分析,为复杂构造演化区细粒沉积物中裂缝形成—生长时期及与构造/油气演化的关系研究提供依据。

1 地质概况

川北地区(图1)北连汉南推覆构造和秦岭造山带,东接大巴山推覆构造带,西邻龙门山推覆构造带,南至四川盆地内部,位于上扬子北缘特殊构造背景(魏显贵等,1997;余谦等,2011)。晚震旦世地壳升降导致下寒武统筇竹寺组与下伏灯影组白云质溶塌角砾岩(或宽川铺组白云质灰岩)平行不整合接触(李伟等,2015);部分地区筇竹寺组与下伏宽川铺组(如南江杨坝、宁强李家沟)硅质岩—灰岩及磷块岩接触。与上覆仙女洞组(沧浪铺组)瘤状泥晶灰岩呈整合接触。筇竹寺组为全球大面积海侵控制下的产物,厚约100~800 m(平均厚度约400 m)。海侵导致筇竹寺组广泛超覆于下伏地层之上,川北地区沉积一套滨—浅海泥质碎屑岩相夹碳酸盐相(赵兵等,1997)。筇竹寺组由下至上可划分为三段:下段以炭质页岩与泥质粉砂岩互层为主,其顶为钙质粉砂岩及泥晶灰岩;中段以炭质粉砂岩与泥岩互层为主;上段为绿灰色、黄灰色钙质粉砂质泥岩与页岩互层,夹细砂岩及灰岩透镜体,生物钻孔明显。钙质结核多发育于筇竹寺组下段及中上部(图1)。

当经过的点数为5时,可以根据经过点数为4的每一种情况进行延伸,每种情况均可以延伸出若干种经过点数为5的情况。当点数大于5的时候亦然,一一列出可能的情况并做出代表密码情况的树状图,最后统一讨论。

之于过往,那些正在客户企业中轰鸣作响的设备,是高斯人自豪的根本;而之于现在和未来,那份难掩的自豪亦支撑着高斯人着眼于如何走得更远,为客户提供更高的附加值。就目前行业内被谈及最为频繁的两个词“绿色环保”和“智能化”,高斯(中国)确有自己的主张。

筇竹寺组岩性以深灰色、黄灰色泥质粉砂岩、钙质粉砂岩及粉砂质泥岩为主,多见粉砂岩及粉砂质泥岩呈薄—纹层状互层(图2b、图3a、3b),沙纹层理、水平层理发育,局部发育钙质结核(图2a),部分结核裂缝发育并被方解石等矿物半充填—近全充填。区内筇竹寺组含钙较高的岩性在野外颜色多呈深灰色,粉砂岩及粉砂质泥岩多呈黄灰色。钙质结核以球状为主(图2d),次为扁平状及条带状(图2e),大小为5 cm×13 cm~40 cm×60 cm(平均8 cm×20 cm)。结核轻微穿过沉积纹层,按其同生结核、成岩结核和后生结核三种成因划分(Selles-Martinez,1996)属成岩结核。结核中钙质含量为35%~58%(平均56.5%),露头见生物虫迹明显(图2c),镜下见结核中生物碎屑发育(图3c),生物以腕足为主,含量约50%。钙质结核基质(CC)为钙质粉砂岩及泥晶灰岩,阴极发光下结核基质发光暗淡(泥岩),局部夹暗红色(钙质胶结物)及蓝色光(石英)。结核中裂缝较发育(占结核体积的8%~11%),由内至外呈放射状特征(图2g);裂缝中心最宽(5 mm~2 cm),向边缘逐渐变窄至部分消失,且不同深度结核裂缝存在差异(从细缝至半开启状洞)。裂缝总体表现为与张性构造脉体相似的几何形态特征:细尖端、弯曲分支、多次分叉、雁行缝排列及由于裂缝贯通形成尖锐的角度偏移。核缘裂缝中常见二期次充填(图3d、3e),核心裂缝内可见3~4期充填物(图3g)。第一期充填矿物为微晶方解石(C1),方解石表面呈雾状,围绕裂缝边缘颗粒形成薄的包壳层部分见残余溶蚀边及围岩残余,阴极发光暗淡;第二期充填矿物为亮晶方解石(C2),方解石呈叶片状,表面较光洁、富含包裹体,晶体粒径多为100~200 μm,长/宽比为1.0∶2.5~1.0∶3.0;阴极发光为橘黄色—橘红色;第三期为细—中晶方解石(C3)充填,方解石形态呈共轴纤维状,晶体较大、表面光洁、含包裹体,双晶纹明显,具全消光;晶体一般大小为200 ~250 μm,晶体长/宽比为1∶3~1∶4;阴极发光下发光暗淡,见生长环边发橘黄色光(图3h、3i)。第四期充填粒状重晶石(图3f),重晶石晶粒多为1~2 mm,呈镶嵌状分布于剩余裂缝空隙内,垂直解理发育,阴极发光暗淡。野外及薄片观察见钙质结核裂缝切穿生物及基质胶结物且有一定位移,指示裂缝形成于结核固化胶结之后。

2 采样及分析方法

除了日常运营外,各官媒会以新闻报道为基础推出一系列活动,增强宣传效果。例如,人民日报社新媒体中心在国庆节期间推出“我爱你中国”系列活动等。

3 岩石学特征

维护系统是面向管理员(通常是语料库建设团队的技术人员,也可以是具有一定语料库技术水平的用户,即科研人员)的系统,以便于维护和管理整个语料库的内容。主要功能有文献文本和图像的查询、增删,文献和图像元信息及语法标注的编辑等。此外,该语料库维护系统还拟实现对敦煌文献文本语料的部分自动勘校功能。由于语料库创建时遵循开放性原则,从而增强了该语料库的数据维护性。用户在使用检索系统和输出系统时,可将其使用体验反馈给语料库管理员,以实现语料库的即时维护和管理。

4 流体包裹体及同位素地球化学特征

裂缝充填物中多期方解石流体包裹体可反映成岩作用、烃源岩/构造演化过程中流体性质特征,为指示裂缝生长及晶体形成环境的有效指标。川北筇竹寺组钙质结核裂缝中除早期(第一期)方解石晶粒太小及最晚期重晶石晶体洁净导致难以寻找有效包裹体外,第二期及第三期方解石内包裹体发育。其中,第二期方解石包裹体(图4a、4c)分析结果表明均一化温度(Th)为78.7~99.8℃,平均为86.4℃。第三期中—粗晶方解石(图4b、4d)流体包裹体均一温度为78.8℃ ~105.3℃,平均为96.6℃。

图2 川北筇竹寺组地层及钙质结核特征宏观照片 Fig.2 Macro-photographs of sediments and carbonate concretions from the Qiongzhusi Formation,Northern of Sichuan basin,Southwestern China (a)泥质粉砂岩及粉砂质泥岩中钙质结核(CC,黄圈所示)发育,旺苍鼓城剖面,筇竹寺组中段;(b)筇竹寺组正常沉积物,泥质粉砂岩中见沙纹层理,南江沙滩剖面;(c)粉砂质泥岩中生物钻孔(DB)发育,旺苍鼓城剖面,筇竹寺组中上段;(d)球状钙质结核,旺苍鼓城剖面,筇竹寺组中段;(e)泥质粉砂岩中透镜状—条带状钙质结核,旺苍鼓城剖面,筇竹寺组中部;(f)钙质结核内放射状裂缝发育,旺苍鼓城剖面,筇竹寺组上部;(g)钙质结核内部裂缝充填物,裂缝呈放射状由外至内部逐渐变宽,裂缝被多期充填物(FF)近全充填,旺苍鼓城剖面,筇竹寺组上部 (a)Carbonate concretions (CC,in circle)in muddy siltstone and silty mudstone,Gucheng area of Wangcang,middle of the Qiongzhusi Formation;(b)Muddy siltstone with ripple bedding from Qiongzhusi Formation,Shatan area of Nanjiang;(c)Drilling of benthos (DB)development in silty mudstone,Gucheng area of Wangcang,middle and upper of the Qiongzhusi Formation;(d)Spherical carbonate concretions,middle of the Qiongzhusi Formation,Gucheng area of the Wangcang;(e)lenticular—banded carbonate concretions in argillaceous siltstone,Gucheng area of Wangcang,middle of the Qiongzhusi Formation;(f)A Carbonate concretion with radial cracks,Gucheng area of Wangcang,upper of the Qiongzhusi Formation;(g)Fracture-infilling of a carbonate concretion,cracks radially widened from the outside to the inside,and fractures are filled by multiple periods of fillings (FF),Gucheng area of Wangcang,upper of the Qiongzhusi Formation

图3 川北地区筇竹寺组钙质结核及裂缝充填物微观照片 Fig.3 Thin-section photographs of sediments and carbonate concretions from the Qiongzhusi Formation,Northern Sichuan basin,Southwestern China (a)泥质粉砂岩夹泥质条带,旺苍鼓城,筇竹寺组下段正常沉积物,单偏光;(b)照片(a)对应正交偏光;(c)含生屑泥质粉砂岩,钙质胶结强烈,旺苍鼓城,筇竹寺组上段钙质结核,单偏光(茜素红染色);(d)钙质结核基质(Matrix)及裂缝中多期方解石(Cal)及重晶石(Brt)充填物,旺苍水磨,筇竹寺组中段,单偏光;(e)照片(d)对应正交偏光;(f)裂缝中方解石及重晶石充填,旺苍鼓城,筇竹寺组上段,正交光;(g)裂缝中多期方解石充填,南江沙滩,筇竹寺组上段,正交光;(h)裂缝中三期(I—II—III)方解石充填(单偏光),旺苍鼓城,筇竹寺组上段;(i)照片(a)对应阴极发光照片 (a)Muddy siltstone interbedded with argillaceous belt,single polarized light,lower of the Qiongzhusi Formation,Gucheng area of Wangcang;(b)photo (a),cross polarized light;(c)Bioclastic muddy siltstone with strong calcareous cementation,single polarized light,carbonate concretion in the upper of the Qiongzhusi Formation,Gucheng area of Wangcang,(alizarin red staining);(d)Multi-phase calcite (Cal)and Barite (Brt)filling in cracks ,the matrix of carbonate concretion(Matrix),single polarized light,Shuimo area of Wangcang,middle of the Qiongzhusi Formation;(e)photo (d),cross polarized light;(f)Calcite and barite filling in cracks ,cross polarized light,Gucheng area of Wangcang,upper of the Qizhuzhusi Formation;(g)Multi-phase calcite filling in cracks,cross polarized light,Shatan area of Nanjiang,upper of the Qiongzhusi Formation;(h)Three phase (I—II—III)calcite filling in cracks,single polarized light,Gucheng area of Wangcang,upper of the Qiongzhusi Formation;(i)photo (h)corresponding to cathodoluminescence photo

图4 研究区筇竹寺组钙质结核裂缝中方解石(Cal)充填物包裹体特征(a、b)及均一温度(c、d)直方图 Fig.4 Micro-photographs (a,b)and corresponding homo-temperature histograms (c,d)of fluid inclusion for crack-filling in carbonate concretions in study area

图5 研究区钙质结核及裂缝充填物碳、氧同位素分析交汇图 Fig.5 Stable isotope values for samples from carbonate concretions and fracture-fillings.Values reported versus Peedee belemnite standard (PDB)

(1)川北米仓山前缘寒武系筇竹寺组海相沉积物中钙质结核为早成岩期成因,结核内裂缝被多期次方解石及重晶石矿物充填。第一期裂缝中微晶方解石充填与结核早期脱水收缩后饱和碳酸钙沉淀所致;第二期亮晶方解石充填与晚奥陶—早志留系期间地层快速沉降、早期生烃相关;加里东构造抬升导致压力释放及二氧化碳逸出,促进裂隙内第三期亮晶方解石充填及沉淀;深埋藏期硫酸盐热还原作用导致最晚期重晶石矿物充填残余裂缝。

5 讨论

结核中裂缝形成多认为与粘土矿物或有机物脱水引起的收缩(脆裂)缝、压实和过压实孔隙水、有机化合物细菌降解生烃/气、同沉积地质运动(包括地震)等(Pratt,2001)因素相关。因结晶习性引起的不同方解石晶体表面潜能的差异性可解释方解石的不同形态,方解石晶体形态亦可反映不同成岩环境中碳酸盐饱和状态下控制的沉淀速度(Lahann,1978)。区内裂缝充填物晶体由早期至晚期具由细变粗的趋势;且早期晶体自形差,晚期晶体自形较好并具生长环边,表明早期裂缝充填物晶体生长空间不足、晶体快速沉淀结晶所致,矿物充填与压力快速释放及二氧化碳逸出有关;而晚期空间相对较大、晶体缓慢生长并经重结晶作用而成。此外,第一期充填物微晶方解石(C1)表面呈雾状及阴极发光暗淡,电子探针分析(表1)显示铁、锰含量相对较低且Fe/Mn值平均为0.66,表明其形成于早期成岩期铁、锰含量较少(常华进等,2009)的浅埋藏氧化环境;而第二期(C2)方解石阴极发光呈亮黄色、包裹体荧光发亮光,探针显示铁、锰含量相对较多且Fe/Mn比值平均为1.48,表明该期方解石分别形成于中~深埋藏期;第三期方解石(C3)阴极发光暗淡,探针分析表明Fe/Mn值平均为0.78,包裹体荧光下发亮光,指示该期方解石形成于深埋藏期烃源岩成熟期。

表1 钙质结核裂缝多期方解石充填物电子探针数据表 Table 1 Electronic probe data for samples from fracture-fillings in carbonate concretions

样品号裂缝充填期次n(Fe) (%)n(Mn) (%)n(Fe)n(Mn)样品号裂缝充填期次n(Fe) (%)n(Mn) (%)n(Fe)n(Mn)No. 1C10.320.241.32No.7C20.520.491.06No. 2C10.270.550.49No.8C20.550.341.63No. 3C10.270.630.42No.9C30.490.640.76No. 4C10.200.320.63No.10C30.440.550.80No. 5C10.060.130.45No.11C30.570.590.97No. 6C20.630.361.76No.12C30.280.440.63

川北地区筇竹寺组钙质结核及裂缝充填物皆具δ18O负值异常。碳酸盐岩δ18O负值可通过大气淡水注入、硫酸盐还原带有机酸氧化作用、海水及沉积物与火山成因或幔源物质间的化学作用、温度升高和早期钙质胶结物在深埋藏环境的重结晶作用(Morad et al.,1996)等过程解释。因区内总体位于深水陆棚沉积环境,未见筇竹寺组沉积后抬升剥蚀导致的淡水注入;且筇竹寺组下部至顶部地层多为连续正常沉积,未见火山活动直接证据。区内钙质结核及裂缝充填物皆具δ18O负异常明显,由第一期第二期第三期方解石充填物δ18O值具逐渐偏负趋势,表明早期裂缝充填物形成由硫酸盐还原带有机酸氧化作用所致,而晚期裂缝充填物(2~3期)可能受温度的逐渐升高及深埋藏环境重结晶作用复合影响。

碳同位素可提供海洋古生产力及营养物利用率的重要特征(Curtis and Coleman,1986)。温度波动、有机质生物降解导致的氧化作用、水体循环及混合(Warren et al.,2008)、微生物作用效应、不同物种代谢过程相关碳酸盐岩沉淀的影响及成岩过程中孔隙流体替代(Armstrong and Brasier,2005)均会导致δ13C值负异常。其中,δ13C极低值多与甲烷形成有关,甲烷可在近地表通过生物化学发酵而成或在埋藏条件下(温度可超过100℃)因有机物热化学降解形成(Moore &Heydari,1993)。区内钙质结核具有极低的δ13C值(平均-6.94‰),表明结核的形成与微生物相关明显(Heather et al.,1996;Dong Jin et al.,2013)。在硫酸盐还原阶段,甲烷厌氧氧化生成大量HCO3-并使孔隙水pH值升高,进而促进筇竹寺组泥页岩地层内碳酸盐沉淀和钙质结核的生长。甲烷的氧化作用及随后的胶结作用多导致胶结物具较低的δ13C值(Roberts &Weaver,2005)。钙质结核中早期裂缝多认为因初始软结核内部被较硬的胶结壳所限、后期脱水形成收缩缝或流体超压所致(Adolf Seilacher,2001);也有学者认为裂缝属埋藏期应力响应的张裂缝,即泥页岩地层中钙质结核裂缝因快速埋藏导致的孔隙流体超压及水平应力减小形成的张性裂缝(Astin,1986)。区内第一期方解石充填物具最低13C值(平均-4.26‰),指示其由浅埋藏环境厌氧微生物有机酸氧化所致,且该期方解石晶粒最细、贫铁,阴极发光暗淡,为结核早期脱水收缩后饱和碳酸钙沉淀所致。由第一期第二期第三期方解石充填物δ13C值负异常具逐渐减弱趋势,表明区内裂缝充填物由边缘至内部有机质生物热化学降解(生烃)导致的氧化作用逐渐增强。

图6 川北地区筇竹寺组埋藏—热演化史—生烃史及裂缝充填对应时期示意图(据饶松,朱传庆等,2013补充) Fig.6 Burial—thermal history plots and Cartoon for correspondingly formation time of fracture-filling of carbonate concretions in the Qiongzhusi Formation,northern Sichuan basin (modified from Rao Song and Zhu Chuanqing et al.,2013 )

钙质结核形成后,在埋藏过程中形成的多成因、多期次的裂缝不仅通过地球化学证据反映,埋藏史—烃源岩—构造演化史证据可为钙质结核中裂缝形成及演化提供温度—时限约束(图6)。川北地区筇竹寺组烃源岩于加里东期成熟、晚海西—燕山期再次增熟;其地层沉积样式对应于半深埋—抬升—深埋—抬升型,热史演化以早晚二叠世期间相对较高热流为特征(曾道富等,1987,1988;韩永辉等,1993;饶松等,2013;Lu Jungang,2017)。即筇竹寺组结核埋藏期早期脱水收缩形成裂缝并被饱和碳酸钙沉淀,形成第一期微晶方解石充填;此后筇竹寺组地层温度于早奥陶世达75℃以上,烃源岩进入生油窗开始生烃,该期生烃产生裂缝导致早期裂缝开启,并被捕获烃类包裹体(均一温度平均86.4℃)的第二期细—中晶纤状方解石充填。加里东期下寒武统底部最高温度接近120℃(Ro达1.5%),按黄第藩(1996)划分标准烃源岩已进入中成熟阶段;然加里东运动使川北地区盆地抬升冷却,导致下寒武统烃源岩演化停滞。在生烃及构造抬升期形成第三期生烃缝及释压缝,后被捕获烃类包裹体(均一温度平均96.6℃)的共轴纤维状中—粗晶方解石充填。最晚期重晶石存在表明裂缝网络被低温热液流体溶蚀—沉淀所致,因其作为典型低温热液沉淀矿物温度多小于200℃,且可与四川盆地二叠世地裂运动时间对应,推测其形成时间对应于二叠—三叠世之间,具体形成时间尚需深入研究。

沉积岩中钙质结核通常由沉积物在成岩过程中因孔隙水流动促进胶结作用而成;Robert(2016)通过对美国犹他州寒武系钙质结核同位素精细对比后亦认为钙质结核属快速生长结果。钙质沉积孔隙度与深度的关系研究表明(Baldwin et al.,1985;Curtis et al.,1986),浅埋藏环境下孔隙度可直接反映上覆压力,深埋藏环境则受矿物等因素影响。全岩分析结果表明,米仓山地区钙质结核碳酸钙含量平均为56.5%。按照Baldwin &Butler (1985)公式D(m)= 6020×S6.35(S=1-φφ可用钙质胶结物含量替代)计算,钙质结核约形成于30.5 m的埋深。

6 结论

稳定C—O同位素特征可用于示踪水温、组成、盐度、主要生产力和养分利用率(Hudson,1977;高计元,孙枢等,1988;陈锦石等,1995;陈选博等,2013)等参数的变化。Jame及Choquette(1983)对早寒武世古海水研究后认为早寒武世海相胶结物中的δ13C、δ18O值分别为-0.1‰、-4.7‰。此外,Jame及Klappa(1983)对加拿大拉布拉多地区同沉积纤状方解石胶结物研究后认为早寒武世δ13C、δ18O值分别为-0.4‰~-0.2‰、-6.2‰~-4.8‰。本次采用Jame及Choquette(1983)结果作为早寒武世海水碳氧稳定同位素测定值,对筇竹寺组钙质结核基质及裂缝中多期充填方解石进行δ13C和δ18O值测试及对比分析。结果表明,川北米仓山地区筇竹寺组钙质结核及裂缝充填物(图5)δ18O及δ13C值负异常明显。其中,钙质结核基质δ13C值为-6.62‰~-7.23‰(平均值为-6.88‰),δ18O值为-9.72‰~-12.38‰(平均值-11.14‰)。裂缝中第一期(C1)方解石充填物δ13C值为-3.02‰~-4.81‰(平均值为-4.26‰),δ18O值为 -6.49‰~-9.33‰(平均值-7.69‰);第二期(C2)细—中晶粒状方解石δ13C值为-2.01‰~-6.27‰(平均值-3.15‰),δ18O值为-6.58‰~-8.81‰(平均值为-7.41‰);第三期(C3)粗晶方解石充填同位素分析表明δ13C值为-1.21‰~-2.26‰(平均值为-1.73‰),δ18O值为-8.06‰~-12.87‰(平均值为-10.28‰)。

本次针对区内多条野外剖面钙质结核及裂缝充填物进行系统取样,并磨制系列薄片。阴极发光及包裹体显微测量在西南石油大学油气藏地质及开发工程国家重点实验室完成,包裹体测温采用德国THMSG600型冷热台,测温范围为-196~600℃,温度精度为0.1℃,加热/冷冻速率为0.1~150.0℃/min。电子探针分析由西南石油大学油气藏地质及开发工程国家重点实验室完成,分析仪器为日本电子JXA-8230。碳、氧同位素测量采用微钻取样并碾磨后在西南石油大学完成,同位素分析采用磷酸盐法,分别在25℃和75℃的恒温下提取收集碳酸盐岩中的CO2并送质谱分析,同位素检测由德国Elementar公司的IsoPrime GC5同位素质谱仪完成,分析结果以δ‰单位表示(采用PDB标准),误差小于±0.1‰。

(2)钙质结核裂缝充填物多具较连续的地质记录,其岩石学—地球化学证据可示踪构造—流体活动事件,为复杂构造区深层构造—流体演化系统分析的良好指示。

致谢:西南石油大学地球科学与技术学院博士徐隆博、朱逸青在基础资料收集方面提供帮助,曾伟、王占磊老师在包裹体测温及生物薄片鉴定方面提供了有益建议;感谢审稿专家及编辑对稿件的认真审阅及提出宝贵意见。

参考文献/ References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract;the literature whose publishing year followed by a “#” is in Chinese without English abstract)

曾道富,曾学思.1987.四川盆地古地温及古地温梯度的研究.天然气工业,(4):12~16+5.

曾道富.1988.关于恢复四川盆地各地质时期地层剥蚀量的初探.石油实验地质,10(2):134~141.

常华进,储雪蕾,冯连君,黄晶,张启锐.2009.氧化还原敏感微量元素对古海洋沉积环境的指示意义.地质论评,55(1):91~99.

陈锦石,闻传芬,钟华,刘培伦.1995.古生代海洋碳同位素演化.地质科学,30(4):338~347.

陈选博,韩喜球.2013.南海东北陆坡烟囱状冷泉碳酸盐岩生长剖面的碳、氧同位素特征与生长模式.沉积学报,31(1):50~55.

冯动军,胡宗全,高波,彭勇民,杜伟.2016.川东南地区五峰组—龙马溪组页岩气成藏条件分析.地质论评,62(6):1521~1532.

冯伟明,谢渊,李嵘,罗建宁,林家善,刘建清,赵瞻.2017.川东南—黔西北桐湾Ⅲ幕岩溶古地貌恢复.地质论评,63(5):1270~1280.

高计元,孙枢,许靖华,H.Oberhansli.1988.碳氧同位素与前寒武纪和寒武纪边界事件.地球化学,(3):257~266.

韩永辉,吴春生.1993.四川盆地地温梯度及几个深井的热流值.石油与天然气地质,14(1):80~84.

黄第藩.1996.成烃理论的发展—(I)未熟油及有机质成烃演化模式.地球科学进展,11(4):327~335.

雷加锦,李任伟,曹杰.2000.上扬子区早寒武世黑色页岩磷结核特征及生化淀磷机制.地质科学,35(3):277~287.

李伟,刘静江,邓胜徽,张宝民,周慧.2015.四川盆地及邻区震旦纪末—寒武纪早期构造运动性质与作用.石油学报,36(5):546~556+563.

李延钧,赵圣贤,黄勇斌,张烈辉,张昆,唐洪明.2013.四川盆地南部下寒武统筇竹寺组页岩沉积微相研究.地质论评,87(8):1136~1148

罗良,漆家福,张明正.2015.四川盆地周缘冲断带构造演化及变形差异性研究.地质论评,61(3):525~535

庞谦,李凌,胡广,谭秀成,马腾,赵东方,芦飞凡,陈虹宇,熊鹰.2017.川北地区下寒武统筇竹寺组钙质结核特征及成因机制.沉积学报,35(4):681~690.

饶松,朱传庆,王强,唐晓音,李卫卫,姜光政,胡圣标,汪集旸.2013.四川盆地震旦系—下古生界烃源岩热演化模式及主控因素.地球物理学报,56(5):1549~1559.

沈骋,谭秀成,周博,李凌,曾伟,陈虹宇,苏成鹏,施开兰.2016.川北旺苍唐家河剖面仙女洞组灰泥丘沉积特征及造丘环境分析.地质论评,62(1):202~214.

孙衍鹏,何登发.2013.四川盆地北部剑阁古隆起的厘定及其基本特征.地质论评,87(5):609~620.

唐永,周立夫,陈孔全,董晓霞,唐文军.2018.川东南构造应力场地质分析及构造变形成因机制讨论.地质论评,64(1):15~28.

王艳飞,肖贤明.2010.四川盆地东北地区古地温梯度模拟.海相油气地质,15(4):57~61.

魏显贵,杜思清,何政伟,刘援朝,吴德超.1997.米仓山地区构造演化.矿物岩石,17(S):107~113.

魏祥峰,赵正宝,王庆波,刘珠江,周敏,张晖.2017.川东南綦江丁山地区上奥陶统五峰组—下志留统龙马溪组页岩气地质条件综合评价.地质论评,63(1):153~164.

余谦,牟传龙,张海全,谭钦银,许效松,闫剑飞.2011.上扬子北缘震旦纪—早古生代沉积演化与储层分布特征.岩石学报,27(3):672~680.

张先进,彭松柏,李华亮,易顺华,胡升奇.2013.峡东地区的“三峡奇石”—沉积结核.地质论评,59(4):627~636.

赵兵,杜思清,徐新煌.1997.米仓山南缘寒武纪岩石地层及层序地层.矿物岩石,17(S1):18~28.

Adolf Seilacher.2001.Concretion morphologies reflecting diagenetic and epigenetic pathways.Sedimentary Geology,143(1):41~57.

Alessandretti L,Warren L V,Machado R,Novello V F,Sayeg I J.2015.Septarian carbonate concretions in the Permian Rio do Rasto Formation:Birth,growth and implications for the early diagenetic history of southwestern Gondwana succession.Sedimentary Geology,326:1~15.

Armstrong H A,Brasier M D.2005.Microfossil,stable isotopes and ocean-atmosphere history.Microfossils,2nd ed.4.Malden,USA:Blackwell Publishing,25~34.

Astin T R.1986.Septarian crack formation in carbonate concretions form shales and mudstones.Clay Minerals,21(4):617~631.

Baldwin B,Butler C O.1985.Compaction curve.AAPG Bulletin,69(4):622~626.

Chang Huajin,Chu Xuelei,Feng Lianjun,Huang Jing,Zhang Qirui.2009.Redox sensitive trace elements as paleoenvironments proxies.Geological Review,55(1):91~99.

Chen Jinshi,Wen Chuanfen,Zhong Hua,Liu Peilun.1995.Carbon isotope variation of paleozoic marine carbonate sequences.Scientia Geologica Sinica,30(4):338~347.

Chen Xuanbo,Han Xiqiu.2013.Carbon and oxygen isotope characteristics of the growth profile of a seep carbonate chimney from the northeastern slope of the South China Sea and its formation model.Acta Sedimentologica Sinica,31(1):50~55.

Curtis C D,Coleman M L,Love L G.1986.Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite,dolomite and siderite concretions.Geochimica et Cosmochimica Acta,50(10):2321~2334.

Dale A,John,C M,Mozley P S,Smalley P C,Muggeridge A H.2014.Time—capsule concretions:unlocking burial diagenetic processes in the Mancos shale using carbonate clumped isotopes.Earth and Planetary Science Letters,394(6):30~37.

Dong Jin,Zhang Shihong,Jiang Ganqing,Li Haiyan,Gao Rui.2013.Greigite from carbonate concretions of the Ediacaran Doushantuo Formation in South China and its environmental implications.Precambrian Research,225:77~85.

Feng Dongjun,Hu Zongquan,Gao Bo,Peng Yongmin,Du Wei.2016.Analysis of shale gas reservoir-forming condition of Wufeng Formation —Longmaxi Formation in Southeast Sichuan basin.Geological Review,62(6):1521~1532.

Feng Weiming,Xie Yuan,Li Rong,Luo Jiang,Lin Jiashan,Liu Jianqing,Zhao Zhan.2017.Restoration of Karst Palaeotopography on the Tongwan Movement period in the Southeastern Sichuan and Northwestern Guizhou.Geological Review,63(5):1270~1280.

Ganies R R,Vorhies J S.2016.Growth mechanism and geochemistry of carbonate concretions from the Cambrian Wheeler Formation (Utah,USA).Sedimentology,63(3):662~698.

Gao Jiyuan,Sun Shu,K.J.Hsu,H.Oberhansli.1988.Boundary event between Precambrian and Cambrian periods in special reference to carbon and oxygen isotopes.Geochimica,(3):257~266.

Han Yonghui,Wu Chunsheng.1993.Geothermal gradient and heat flow values of some deep wells in Sichuan basin.Oil &Gas Geology,14(1):80~84.

Huang Difan.1996.Advances in hydrocarbon generation theory-(i)immature oils and generating hydrocarbon and evolutionary model.Advance In Earth Sciences,11(4):327~335.

Hudson J D,Coleman M L,Barreiro B A,Hollingworth N T J.2001.Septarian concretions from the Oxford Clay (Jurassic,England,UK):involvement of original marine and multiple external pore fluids.Sedimentology,48(3):507~531.

Hudson J D.1977.Stable isotopes and limestone lithification.Journal of the geological society of London,133(6):627~660.

Irwin H,Curtis C D,Coleman M.1977.Isotopic evidence for source of diagenetic carbonates formed during burial of organic rich sediments.Nature,269(5626):209~213.

James N P,Choquette P W.1983.Limestones:the seafloor diagenetic environment.Geoscience Canada,10 (4):162~179.

James N P,Klappa C F.1983.Petrogenesis of early cambrian reef limestones,labrador,Canada.Journal of Sedimentary Petrology,53(4):1051~1096.

Lahann R W.1978.A chemical model for calcite crystal growth and morphology control.Journal of sedimentary petrology,48(1):337~343.

Lei Jiajin,Li Renwei,Gao Jie.2000.The characteristics of black shale-hosted concretionary phosphates and the mechanisms of microbes mediated phosphorus precipitation in Cambrian horizon on Yangtze platform.Scientia Geologica Sinica,35(3):277~287.

Li Wei,Liu Jingjiang,Deng Shenghui,Zhang Baomin,Zhou Hui.2015.The nature and role of late Sinian—Early Cambrian tectonic movement in Sichuan basin and its adjacent areas.Acta Petrolei Sinica,36(5):546~556+563.

Li Yanjun,Zhao Shengxian,Huanu Yongbin,Zhang Liehui,Zhang Kun,Tang Hongming.2013.The sedimentary micro-facies study of the lower Cambrian Qiongzhusi formation in southern Sichuan Basin.Geological Review,87(8):1136~1148

Lu Jungang,Ma Jie,Chen Shijia,Wu Bingyan,Li Yong,Zhang Benjian,Han Hui,Lin Ruopeng.2017.The geochemistry and origin of lower Permian gas in the northwestern Sichuan basin,SW China.Journal of Petroleum Science and Engineering,157:906~916.

Luo Liang,Qi Jiafu,Zhang Mingzheng.2015.Difference study on evolution and deformation of the fold—thrust belts surrounding Sichuan Basin.Geological Review,61(3):525~535

Mahboubi A,Moussavi-Harami R,Collins L B,Muhling J R.2010.Petrography and geochemical signatures in crack filling calcite sequences in septarian concretions,Sanganeh Formation,Kopet-Dagh Basin,NE Iran.Journal of Applied Sciences,10(7):1~15.

McBride E F,Picard M D,Milliken K.2003.Calcite-cemented concretions in Cretaceous sandstones Wyoming and Utah,U.S.A.Journal of Sedimentary Petrology,73(3):462~483.

Middleton H A,Nelson C S.1996.Origin and timing of siderite and calcite concretions in late Palaeogene non- to marginal-marine facies of the Te Kuiti Group,New Zealand.Sedimentary Geology,103(1~2):93~115.

Moore C H,Heydari E.1993.Burial diagenesis and hydrocarbon migration in platform limestones:a conceptual model based on the Upper Jurassic of the Gulf Coast of the U.S.A.,in A.D.Horburay and A.G.Robinson,eds.,Diagenesis and basin development:AAPG Studies in Geology,36:213~229.

Morad S,De Ros L F,Al-Aasm I S.1996.Origin of low δ18O,pre-compactional ferroan carbonates in the marine Sto Formation (Middle Jurassic),offshore NW Norway.Marine and Petroleum Geology,13(2):263~276.

Mozley P S,Burns S J.1993.Oxygen and carbon isotopic composition of marine carbonate concretions:an overview.Journal of Sedimentary Petrology,63(1):73~83.

Mozley P S,Davis J M.2005.Internal structure and mode of growth of elongate calcite concretions:evidence for small-scale,microbially induced,chemical heterogeneity in ground water.Geological Society of America Bulletin,117(11):1400~1412.

Mozley P S.1996.The internal structure of carbonate concretions in mudrocks:a critical evaluation of the conventional concentric model of concretion growth.Sedimentary Geology,103(1~2):85~91.

Pang Qian,Li Ling,Hu Guang,Tan Xiucheng,Ma Teng,Zhao Dongfang,Lu Feifan,Chen Hongyu,Xiong Ying.2017.Characteristics and genetic mechanism of calcareous concretions in the early Cambrian Qiongzhusi formation of northern Sichuan Basin.Acta Sedimentologica Sinica,35(4):681~690.

Pratt B R.2001.Septarian concretions:internal cracking caused by synsedimentary earthquakes.Sedimentology,48(1):189~213.

Raiswell R,Bottrell S H,Dean S P,Marshall J D,Carr A,Hatfield D.2002.Isotopic constraints on growth conditions of multiphase calcite-pyrite-barite concretions in Carboniferous mudstones.Sedimentology,49(2):237~254.

Raiswell R.1971.The growth of Cambrian and Liassic concretions.Sedimentology,17(3~4):147~171.

Rao Song,Zhu Chuanqing,Wang Qiang,Tang Xiaoyin,Li Weiwei,Jiang Guangzheng,Hu Shengbiao,Wand Jiyang.2013.Thermal evolution patterns of the Sinian—Lower Paleozoic source rocks in the Sichuan Basin,Southwest China.Chinese Journal of Geophysics,56(5):1549~1559.

Roberts A P,Weaver R.2005.Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4).Earth Planet Sci Lett,231(3):263~277.

Seilacher A.2001.Concretion morphologies reflecting diagenetic and epigenetic pathways.Sedimentary Geology,143(1):41~57.

Selles-Martinez J.1996.Concretion morphology,classification and genesis.Earth-Science Reviews,41(3~4):177~210.

Shen Cheng,Tan Xiucheng,Zhou Bo,Li Ling,Zeng Wei,Chen Hongyu,Su Chengpeng,Shi Kailan.2016.Construction of mud mounds and their forming models of Xiannvdong formation in Tangjiahe section of Wangcang,North Sichuan.Geological Review,62(1):202~214.

Sun Yanpeng,He Dengfa.2013.Discovery of the Jiange paleo-uplift in north Sichuan basin and its basic characteristics.Geological Review,87(5):609~620.

Tang Yong,Zhou Lifu,Chen Kongquan,Dong Xiaoxia,Tang Wenjun.2018.Analysis of tectonic stress field of southeastern Sichuan and formation mechanism of tectonic deformation.Geological Review,64(1):15~28.

Wanas H A.2008.Calcite-cemented concretions in shallow marine and fluvial sandstones of the Birket Qarun Formation (Late Eocene),El-Faiyum depression,Egypt:field,petrographic and geochemical studies:implications for formation conditions.Sedimentary Geology,212(1-4):40~48.

Wang Yanfei,Xiao Xianming.2010.An investigation of paleogeothermal gradients in the northeastern part of Sichuan Basin.Marine Origin Petroleum Geology,15(4):57~61.

Warren L V,Almeida R P,Hachiro J,Machado R,Roldan L F,Steiner S S,Chamani M A C.2008.Evolução sedimentar da Formação Rio do Rasto (Permo—Triássico daBacia do Paraná)na porção centro sul do estado de Santa Catarina,Brasil.Revista Brasileira de Geociencias,38(2):213~227.

Wei Xiangfeng,Zhao Zhengbao,Wang Qingbo,Liu Zhujiang,Zhou Min,Zhang Hui.2017.Comprehensive evaluation on geological conditions of the shale gas in upper Ordovician Wufeng Formation—Lower Silurian Longmaxi Formation in Dingshan Area,Qijiang,Southeastern Sichuan.Geological Review,63(1):153~164.

Wei Xiangui,Du Siqing,He Zhengwei,Liu Yuanchao,Wu Dechao.1997.The tectonic evolution of Micangshan Area.Journal of Mineralogy and Petrology,17(S):107~113.

Wilkinson M.1993.Concretions of the Valtos Sandstone Formation of Skye:geochemical and palaeo-hydrology.Journal of the Geological Society of London,150(1):57~66.

Woo K S,Khim B K.2006.Stable oxygen and carbon isotopes of carbonate concretions of the Miocene Yeonil Group in the Pohang Basin,Korea:types of concretions and formation conditions.Sedimentary Geology,183(1):15~30.

Yemane K,Kelts K.1996.Isotopic geochemistry of Upper Permian early diagenetic calcite concretions.Implications for Late Permian waters and surface temperatures in continental Gondwana.Journal of African Earth Sciences,125(1-4):51~73.

Yu Qian,Mu Chuanlong,Zhang Haiquan,Tan Qinyin,Xu Xiaosong,Yan Jianfei.2011.Sedimentary evolution and reservoir distribution of northern Upper Yangtze plate in Sinian—Early Paleozoic.Acta Petrologica Sinica,27(3):672~680.

Zeng Daofu,Zeng Xuesi.1987.A research on paleo-geotherm and paleo-geothermal gradient of Sichuan Basin.Natural Gas Industry,07(4):12~16+5.

Zeng Daofu.1988.A preliminary study on the restoration for the various denuded sequences of Sichuan Basin.Petroleum Geology&Experiment,10(2):134~141.

Zhang Xianjin,Peng Songbai,Li Hualiang,Yi Shunhua,Hu Shengqi.2013."Three gorges landscape stones":the sedimentary concretionin eastern three gorges area.Geological Review,59(4):627~636.

Zhao Bing,Du Siqing,Xu Xinhuang.1997.The lithostratigraphy and sequence stratigraphy of Cambrian in the south of Micangshan area.Journal of Mineralogy and Petrology,17(S1):18~28.

冯明友,郑江,刘田,刘小洪,张家强,梅文华,孙霓源,龙涛
《地质论评》 2018年第03期
《地质论评》2018年第03期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号